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ABSTRACT

This study is concerned with information theory and its

relevance to the study of complex systems° When information about

every detail of their activity is kept, many systems are too complex

to be manageable and can only be dealt with by sacrificing detail°

it is shown here that multlvariable information theory is capable

of eliminating much detail while preserving information about the

interrelations between parts of a system, even when those interrelations

are very complex° A procedure is described and exemplified, for

example, which is helpful in the decomposition of hierarchical systems°

It is shown, among other results, that when two variables

are related (in the set theoretic sense) the transmission between

them is maximized when their behaviors are isomorphic. This obser-

vation leads to an algorithm for the computation of channel capacity

for arbitrary finite-state systems of a very general type°

The importance of information in regulatory processes is

discussed and quantified, and several basic regulatory schemes are

discussed in terms of the information involved, showing in an exact

way how information transfer and channel capacity limit the ability

of any system to act as a successful regulator.
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i. INTRODUCTION

1

Norbert Wiener defined Cybernetics as the science of control

and communication, in the animal and machine ". By that definition,

this paper could be called a cybernetic study, for it is concerned with

communication within and between systems, and also %ith the role of

communication in control.

When science attempts to gain insight into real-world systems,

it invariably begins by dismissing, explicitly or implicitly, many of

the variables which might be considered but which are thought to be

irrelevant or inconsequential. A scientist studying maze-learning in

rats mght consider the phase of the moon, the length of the rat's

tail, the color of the experimenter's tie, and so on as variables, but

in fact he would be silly to do so unless he had reason to think them

relevant. Science deals not with real-world "systems" but only with

models, i.e., abstracted versions, of them.

Until recently, the systems which were studied were sufficiently

simple that after all of the irrelevant variables were discarded, the

number remaining was small enough to give a manageable model. When

genuinely complex systems are tackled, however, the old procedure

doesn't work; either one is forced to discard relevant variables to

get a model of manageable complexity, which is then of poor quality,

or else one ends up with a model which is of good quality but itself

unmanageably complex.

The information theory of complex systems, which is the

subject of this _aper_ can in a sense b_ v_w__......._ __ _,_y.__ ___^_--



with the latter type of model, by discarding details and only keeping

information about its functional structure--which variables affect

which and to what degree, which variables are statistically "close" to

which others, and so on. Chapters II, III, and IV are concerned with

this "communication structure" of systems.

The information theory used here is not the highly specialized

theory developed for use in sophisticated communications systems, but

rather is an outgrowth of the suggestion by McGill 2, Garner B, and

Ashby 4 that the theory formulated by Shannon 5 could be extended to n

variables and could be usefully applied to the study of relations in

systems of many variables.

Information theory is important for the study of complex

systems in another closely related respect. Most complex systems

found in nature, and many of man's complex constructs, survive by

acting appropriately on the basis of information they receive; they

regulate their actions on the basis of information. That virtually

all organisms which have survivsd the process of natural selection

have information sensors bears witness to the importance of information

to survival. Indeed, the almost incredible sensitivity and delicacy

of the sensory apparati developed in the course of evolution lead one

to suspect that primacy in the "struggle for survival" goes to those

who can best obtain and use information; we humans have at least five

distinct systems for taking in information from the environment, and

additional systems for sensing our internal conditions.

The channel capacity of a system is a bound on the ability

of the system to accept, transform, and act on incoming information,

•



and as such it is a quantity important for the survival of the system°

In chapter III is introduced an algorithm for the calculation of channel

capacity for a very general type of system; in chapter IV information

transfer in systems is discussed in more general terms°

Chapter V, on Regulation, was inspired by but goes consider,_

ably beyond Ashby's _w of _,e_uls___'_ _'*ueVariet6o In _i_.-_chapter we

discuss the relationship between regulation and information transfer

and show that the two are closely linked°



IIo NOTATIONS AND CONVENTIONS

Introduction

Section 2olwill set the basic notations to be used hereafter.

It does not contain any new materialo Section 2.2 will provide

conversion techniques between discrete-_ariable and continuous-variable

distributions, allowing us to deal thereafter with discrete distributions

only. Section 2@3wili justify our exclusive use of the discrete time

variable.

2.1 Basic notations

Matrices will be denoted by underlined Latin capitals, e°g., _,

o

Constants will be denoted by lower case Latin letters, usually

early in the alphabet, eogo, a, h, ml2o

Sets will be denoted by Latin capitals or by braces enclosing the

elements, eog., B = {bl, b2, b3}.

Variables will be denoted by upper case Latin capitals usually

toward the end of the alphabet, eogo, X, Y° Compound variables whose

components are shown explicitly will be denoted with • and _ signs,

e.g., <Xl, X2> or even <X, <Yl' Y2 > ' Z >o If S is an ordered set

of variables IXI, X2, .oo, XM} , <S> is the compound variable

X2 , _o• XI , °oo, XM
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Values taken by a variable will be denoted by lower case versions

of the letter representing the variable, possibly with subscripts o The

set of values a variable can take will be denoted by the Latin capital

representing the variable° For example, the set X = [Xl, x2, x3} is

the set of values taken by variable X o Using the same symbol for the

variable and its set of values is often convenient, and the context will

always make clear in which sense the symbol is being used°

Values of a variable, being merely the elements of a set associated

with a variable, need not be numbers, and no metric is implied° If the

set is finite, the elements may be ordered and numbered arbitrarily for

convenience, and it is frequently useful to deal with such numbers as

equivalent to the values, e.g°, to equate "X takes its third value"

with "X = 3"°

Functions will be denoted by lower case Greek letters, or by f or

g. The domain and range sets are a fundamental part of a function's

definition; they are displayed as, for instance, fl : Y -_ A, which is

read "Function fl maps Y into A"o

A s_stem S is an ordered set of variables, and the variables are

members of So By system S we will also mean the product set whose

components are the value-sets for the variables in So if there is a

relation (in the set theoretic sense) over the members of S, the subset

of the product set implied by that relation will be called the sjstem

relationn; some authors use the term system to refer to what is here

called the system relation° If the variables in S are associated with

machines, "the system" can also refer to the collection of machines, if

no confusion results° The term system may thus be used in three distinct

ways; this should cause no confusion in practice°
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A system-value is an ordered N-tuple with one component for each

variable in S; e ogo, S = _X1, X2, _ has the value _2, 4, 5> when

X I = 2, X 2 = 4, and X3 = 5.

A Machine-with Input (MWI3. is a sequential machine described by

a function of the form f : St x It -_ St+l , that is, st+l = f(s t, it),

where sm is the "state" at time _ and i_ the "input". This is usually

written f : S x I -_ S with the umderstaading that f maps the "present"

state and input into the "next" state° A MWI is diagrammatically

represented as shown in Figure l o Both I and S may be product sets.

A Mapper is a machine described by a function of the form

g : It -_ Ot, that is, ot = g(i t), in which o_is the "output" at time

and i_ the "input". This is usually written g : I -_ 0 with the under-

standing that g maps the "present _' input into the "present" output.

A mapper is represented as shown in Figure 2o

A Moore automaton is a machine consisting of a MWI f : S x I --> S

plus a mapper g : S -* O, as shown in Figure 3o

A fre_n_c i table associated with a system S = IX1, X2, ooo, XM_

is an M-dlmensional matrix whose entries are all nonnegative real numbers.

It is denoted N(X1 _ X2, ooo, XM) , N(S), or just N if the argument is

- X2, o.o, XN' withunderstood° The typical element in N is nx1 '

particular subscripts indicating particular system-values. Each element

gives the real number (ordinarily, an integer) associated with the

frequency of the system-value to which it corresponds; e.g., if

S = [ X1, Yl' Y2} ' the entry n2, 4, 5 = 3 indicates three occurrences

of the triple <X1, Y1, Y2 > = <2, 4, 5 >o The sum of all entries in

a table N(S) is denoted by N(S) or Just N.
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Thus N gives the frequencies of occurrence of all the system-

values; the entries of mare presumably obtained from some data-gathering

process, perhaps by observation of a physical system over a long period.

It is not our purpose here to discuss how frequency tables may be obtained,

but only to deal with tables already provided°

If a system relation holds over the members of S, some of the

entries of N will necessarily be zero, and conversely. (If N is one-

dimensional, the relation becomes a property in set theoretic language.)

Somewhat more generally, N can be interpreted, after suitable normali-

zation, as the characteristic function, and therefore the descriptor,

of an M- ary fuzzy relation 7 on S°

A frequency table associated with S = { XI, X2, ..., XM_ can

also be associated with other systems, derived from S by grouping the

variables in various ways° For example if S = _XI, X2, X3_ and

Y = ( X2, XB >, the frequency table can be associated with the system

S' = {XI, YI. This just amounts to noting the obvious fact that an

n-tuple of variables can be considered as a single variable with a

new name o

An important operation on N(X1, X2, ..., XH) is that of collapsing

the frequency tabl e over one or more of its dimensions (variables).

Collapsing over Xi gives a new table N(X I, X2, °oo_ Xi_ I, Xi+ I, ..o, XM)

whose entries are obtained by summing over the Xi dimension:

=_ nxl,nXl' X2' °'° Xi-l' Xi+l' "°°' _M X2' "''' XM

Xi

For example, collapsing N(X, Y) over X gives N(Y):



X

Y

0 2 4

l 3 l

_(x,Y) _(Y)

For a one-dimensional frequency table N(X), the entropy of X,

denoted H(X), is defined to be zero if N = 0 and is defined as follows

if N > 0:

H(X) --
nx log 2 nx

m

N N

X

1 I- 7
-_ _ [N log2N_ _7nx log2nx j o

The summation runs over all the cells in the frequency table°

Henceforth, in accordance with information theory standards, we

will assume logarithms are always to base 2, so that the unit for

entropy, etc. is the bit.

With an M-dimensional frequency table N(XI, X2, o.o, XM) for a

system S = IX1, X2, ooo, XM_, the entro of s stem S, denoted

H(XI, X2, o.., XM) , H(S), or H(N), is zero if N = 0 and otherwise is

defined by n

H(XI'X2' "°'XM) = "_ _.... I nXI'X2''°°'XM l°gXI'X2''°°'XMN N

X X X
1 2 M

the summation running over all cells in N(S)o

The expression nxi/N may be interpreted as a probability, if this

interpretation is useful, but to avoid unnecessary connotations we will
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generally avoid doing SOo The term "probability" carries a connotation

of permanenceand reference to future events, while the frequency table

connotes a reference to events of the past - although the table in the

abstract is of course just an array of numbers, with no time reference@

If the assumptions under which a system is being studied allow

the probability density function to be meaningfully defined, then the

probability densit _ function for a system S m { Xl , X2 , ..., XM _ is

denoted P(X1, X2, °o., XM) or p(S) and is defined in the ordinary way°

In this case, H(X) and H(S) are defined as follows:

H(X)=- I p(X)logp(X)

H(S) =- _ _ ooo_ P(XI,X2,ooo,X_)log P(XI,X2,oo.,XM)

•dX dX .°.dX
1 2 M

The operation of collapsing a frequency table over a variable Xi

corresponds, with probability densities, to integration over Xi:

p(Xl,x2, o°o,xi-1,xi+l,oo.XM)_-J p(xl,x2, .o.,xM)_i
--oO

The relation between discrete and continuous distributions will

be considered in more detail in section 2.2.

For N(X,Y), the entro__of X conditional on Y is denoted by

Hy(X) and defined by

Hy(X) = H(X, Y)-, H(Y)

To obtain H(Y) from N_X_Y) requires collapsing N over the X-dimension,

thus obtaining N(Y)_ H(Y) is then obtained from N(Y).

The obvious generalization of Hy(X) is Hyi,y2,...,Yn(Xl,X2,...,XM);
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if S1 = [XI,X2,ooo,Xm} and $2 = {Y1,Y2_ooo_Yn_, this can be denoted

Hs2(S1) , the entropy of S1 conditional on $2_ and defined by

H%(S l) = H(SIU%) - H(%)o

Normally, Hs2(SI) is of interest only if SI and S2 are disjoint° The

set SIU S2 is an ordered set, just as S1 and S2 are ordered sets°

For a two-dimensional table N(X_Y)_ the transmissicn between

X and_____Y,denoted T(X : Y), is defined by

T(X : Y) = H(X) + H(Y) - H(X_ Y).

The expression on the right is eq_ml to H(X) _ Hy(X) and to H(Y) - HX(Y),

but we take the definition above as primary°

T(X : Y) can be generalized in the obvious way to T(S 1 : $2) ,

but it can be generalized in a more fundamental way by introducing more

single variables° The total transmission over the system S =[X1,X2,ooo,XM} ,

denoted T(X 1 : X2 : o.° : XM) , T(S), or T(N) where N is the frequency

table for S, is zero if S contains only one variable and otherwise is

defined by

T(X 1 : X2 : .oo : XM) = H(XI) + H(X2) + ooo + H(XM)

- H(XI, X2, o°o, XM) o

T(S) is a measure of the total constraint holding between all the vari-

ables in S - a measure of the degree to which the variables are statis-

tically interdependent° If T(S) = O, the system relation is of a

degenerate type, being merely the conjunction of one-dimensional

properties on the several variables° (These statements will be justified
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The transmission over a system S! = _XI, X2, ..., Xm_
conditional

= YI' Y2' "_" Yn is denoted by Y2' "'" Yn

or Ts2(SI) and is defined by

Ts2(SI) --Hs2(XI) + Hs2(X 2) + .oo + Hs2(X m) - Hs2(SI).

The transmissi°n between S1 = _Xl, X2, "'', Xm_ _-_ =_Yl' Y2' °''' Ynl

is denoted by T(SI : S2) and is defined by

T(S I : $2) = T(_XI, X2, ooo, Xm_ : K YI' Y2' °'" Yn _ )"

All these entropies, conditional entropies, transmissions, and conditional

transmissions are non-negative quantities measured in bits, and they

all have familiar interpretations discussed in the literature.

A less familiar entity is the interaction° Given a three-

dimensional frequency table N(X, Y, Z), the interaction between X_ Y_ and

Z is denoted by Q(X, Y, Z) and is defined by

Q(X, Y, Z) = Tz(X : Y) - T(X : Y)

It is easy to show, by collecting terms, that

Q(X, Y, Z) _ Tx(Y : Z) -T(Y : Z)

= Ty(X : Z) - T(X : Z)

so the definition is actually symmetrical in the variables. Q(X, Y, Z)

is a measure of how much the transmission between two of the variables

is conditional on the third; Q may be either positive, negative, or

zero.

The interaction between X_2___ and Z conditional on W, denoted

Qw(X, Y_ Z), is defined like Q(X_ Y, Z) but with every H subscripted

with a W.
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Q(X, Y, Z) may be generalized in an obvious way to Q(SI_ S2_ S3) ,

or more fundamentally by introducing more variables in the argument. The

n-variable interaction over the _stem S = _Xl, X2, o°o, Xn_ , denoted

Q(Xl, X2_ oo._ Xn) or Q(S), is defined iteratively as follows:

Q(x!'x2' Xn)= (X!'X2'°°°'X -l)
n

- Q(X1, X 2, oo°, Xn_ I)

Interactions have been interpreted and discussed in papers by Ashbf

and McGill 2 .

2.2. Approximate conversions of discrete to continuous distributions

and vice versa

It is frequently convenient to replace a continuous distribution

p(X) on a continuous variable X by a discrete distribution P(Y)

1

(= S N (Y)) on a discrete variable Y, or to do the reverse. This is

because some operations are easier in the discrete domain, some easier

in the continuous domain. The problem we attack in this section is, what

is the relationship between the entropy of the original distribution

and the entropy of the [ approximately] transformed distribution? In

effect we are looking for a bridge across the gap between continuous -

and discrete - variable information theories, a bridge allowing transfor-

mations in either direction° We shall show that if the transformation

is done with care, the entropies of the original distribution and of its

transform differ only by a constant and that transmissions and interactions

are unaffected by the transformation.
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2.2.1. Transforming a continuous distribution to a discrete distribution

Let Sc = _XI, X2, o.., XM_ be a set of continuous variables for

which the probability distribution is P(Xl, X2, ..., XM) = P(Sc), and

suppose that for each Xi in Sc, p(X i) is finite within an interval Ii

of finite length Li and is zero (or may be so approximated) outside lio

Thus,

f P(Xi)dX i _ i

Ii

(Ii need not be a connected interval.) Let Ii be divided into Ni

subintervals Ill , Ii2 , ooo, liNi, each of length Li/Nio

Ii i' 12 2' , a totalWithin the space whose edges are j j ..., IMj M

probability of

Ilj I I2j 2

)dX dX ...dX"°" P(Sc 1 2 M

IMj M

is enclosed; the average value of the probability density within that

space is

P(Jl" J2' °°°' JM ) P(Jl' J2' °°°' JM)

I I I

lJ1 2J2 MJM

where Vo = N1 :_ NM o

If in each such space P(Sc) is replaced by P(Sc) , the resulting distri-

bution is an approximation to the original, and its quality depends on

the numbers Ni, i _ i _ Mo The entropy of the approximation,



H
appx

_,_o)-- o.o p(o) log;,s_)_i_2.o._M

I1 12 iM

15

will of course equal, in the limit as _ll N1 go to infinity, the entropy

of the original distribution,

I1 12

That is,

C

o..h p(sc) logp(sc)aXl_2OOO_O

IM

lim

N I --_

N 2 --_

• oo

NM _o_

_ppx (Sc)= H(So).

N1 N2 NM

j_.=l jM=IJl=l "

Theorem IIol

P(jl,J2,o..,jM) log F(Jl,J2,o..,jM).

The relation between H(Sd) and Happx(Sc) is given by

•_al - _appx_c, .v_ k _i "2 "'°

q

Now the numbers P(Jl' J2' '°'' JM ) constitute a discrete distribution

over a set Sd = _Yl' Y2' °'°' YM_ of discrete variables, with Y.i

corresponding to Xi:

P(Y1 = Jl' Y2 = J2' "'°' YM = JM ) = P(Jl' J2' °'°' JM )°

The entropy of this discrete distribution is
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Proof:

Since p(Sc ) is uniform within each of the volume segments, the

integration necessary for finding Happx(S c) reduces to a summation:

Happ x(Sc) = -- _ °°° J_=l\ VoJl=l j2=l

log

:- _ _ °°" _ P(JI' J2' °°'' JM ) log P(JI' J2' "''' JM )

+ _ _ "'" _ P(JI' J2' "''' JM)" log Vo

= H(Sd) + log Voo

Q. E. D.

Therefore, H(Sd) _ H(S c) + IogILIL2...LM 1, with the quality of the

approximation depending on the numbers NI, N2, .oo, NMO Clearly this

situation holds even when the approximation to P(Sc) varies, within

reason, from the rigidly defined P(Sc). -X_$
I

As an example, suppose p(X) =_-_£ for X _ 0; for this

distribution H(X) = 2.04 bits° See Figure 4° If p(X) is approximated

as zero outside the interval [0, 4) = I and the interval is divided

into N = i0 equal parts, we obtain the following probabilities for the

subintervals:

subinterval probability

[o, o.4 ) .1585
[o°4, o°8 ) o1523
[0°8, io2) o14O7
[io2, 1o6) o1248
[1.6, 2 ) .1064
[2, 2°4 ) .0872
[2.4, 2.8) .0686
[2°8, 3°2) .o519
[3.2, 3@6) .0377
[3.6, 4 ) .0264



.L_7

p(X)

0,4

0.3

0.2

o.i

o o i I I T-- ._ X
I 2 3 4 5

Figure 4o
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Calculating H(Sd) with these numbers, and ignoring the fact that they

do not total 1.OOOO, we obtain

H(Sd) = 3.14 bits

and therefore H(Sc)=H(X)_ 3.14-log_) =
i@82 bits.

If the probabilities for the subintervals are not calculated

exactly but are only approximated, for instance by multiplying p(X)

at one end of the subinterval by L/N = 0.4, other estimates for H(X)

are obtained.

{"Probability" for _X, X+Oo4)= 0.4 p(X)_ =_ H(X) = 1o85 bits.

_"Probability" for _X, X+O.4)= 0.4 p(X+Oo4)} _ H(X) = 1.78 bits.

All of these values agree reasonably with the true value of 2.04 bits,

considering all the approximations made for the calculation.

2.2.2. Transformin 5 a discrete distribution into a Continuous distribution

Given a discrete distribution P(Sd) on set Sd = _Y1, Y2, "'" YM],

a continuous distribution can be formed by the reverse of the process

described above; to do so is of little use, however, unless the continuous

distribution thus obtained is subsequently approximated by another

continuous distribution which is easier to deal with -- for which

integrations are easier, for instance.

2.2.3. The effect of continuous_discrete transformation on transmissigns

and interactions

The entropy of a continuous distribution and its discrete

counterpart differ by a constant (neglecting approximation errors.)

Transmissions between continuous variables, and transmissions between

their discrete counterparts_ are equal; T is unaffected, that is to say,
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by the transformation° For suppose we have a set of continuous variables,

Sc, with a distribution P(Sc) , and a corresponding set of discrete

variables Sd with the transformed distribution P(Sd):

T(sc)= _(xI : x2 = .oo.xM) = H(Xl)+ H(X2)+ ooo+ H(XM)

- H(Xl,X2_ooo,_)o

_(Sd)--_(YI:Y2:"°':YM)= _(Y1)÷ _(Y2)+ "" + _(YM)

H(YI,Y2,°°°,YM)o

From the theorem,

H(Y1) _H(XI)+ log(_ --1)

H(Y2) _H(X2)+ log<_)

ooe

(_ "'_I
H(YI'Y_'"'" YM)_ H(Xl'X2'"°°'X) + log .._!

Therefore

- .(xI, xz,... x.) -_._.o__ :o_.

_"_(so)+ [_.o_(-_)

- _(so)

+o..÷log_" -logh_,2_

Q. E. Do



Interactions, which are defined by differences between trans-

missions, are therefore also unaffected by the transformation°

2O

2°2.4° General comments on the transformations

Because transformations between discrete and continuous variables

and distributions are possible, we do not need to make separate statements

for each type but may confine ourselves for the most part to discrete

variables, which are generally easier to handle and which fit more readily

into the framework of machines-with-input and mappers. When it seems

appropriate, we may make explicit statements about the continuous case,

but usually that case will be carried along implicitly.

There is usually a certain amount of error involved in approxi-

mating a continuous distribution P(Sc) by another, P(Sc) , which is

uniform within each small volume--the more finely the sample space is

cut, the smaller will be the error, in general° This error corresponds

to "quantization noise," which has been studied elsewhere, and how much

error of this type to allow is a pragmatic question which can only be

decided from case to case°

Some types of distributions do not allow transformation and in

fact are outside the class of distributions information theory can

handle, for instance (with_ being the unit step function):

p(X) (X OoS)+ OoSp(x)

See Figure 5.

It is meaningless to talk of H(X) for a_v distribution which mixes

delta "functions" with finite fun_tlonso
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p (X)

0,5

0 0

O,5

)- x

Fig_Ir e 5.



2"3- Discrete-time convention

Just as it is generally easier to deal with discrete distribu-

tions, so is it generally easier to deal with time as a discrete

rather than a continuous variable. For one thing, machines-with-

input are defined on the basis of discrete time, as are automata,

and it is with these that we will deal later. For another, the

systems with which one deals in engineering are almost exclusively

those for which the approximation of finite bandwidth is appropriate,

and to which the Sampling Theorem may therefore be applied to put

time on a discrete basis; the errors involved can be made as small

as desired by reducing the size of the unit time interval or quantum.

Another reason for treating time as a discrete variable is

that we shall frequently be concerned with the values a variable

takes over a time span; the value it takes at time _ is in effect

a variable; were we to consider all the values over the time span,

we should have to deal with an uncountable number of variables and

an unmanageable situation. By quantizing the time variable, this

problem is avoided.

Finally, much machinery developed for Markov processes is

based on the assumption of a discrete time variable, and to take

advantage of that machinery we must employ discrete time. So

henceforth, unless explicit mention is made to the contrary, we will

assume time to be a discrete variable.
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Introduction

in this chapter we will discuss several res,_lts i_ i_formation

theory, whose applications are not limited to t_e study of c_mpiex

systems° Since the focus of this paper is cm ccmplex systems, the

results will be discussed with a bias in that direction_ bu_ the

results themselves are basically mathematical and applicable to other

situations° All of the results, however, are usef_il in the study of

complex systems and find applications, explicitly or im_licitly, in

the succeeding chapters°

3.1o Operations on the frequency table which leave H a T_ and Q unchanged

Given N(S), a frequency table for the set of variables S,

certain common operations on _Nleave all H's, T's, and Q_s unchanged°

These are:

io

2_

Permuting the order of the axes (for two variables,

transposing N; for more variables, permuting the order of

the variables in S = IX1, X2, ooo , XM_, which is an

ordered set° )

Changing the order in which the values for a variable are

listed along the axes (for two variables, permuting rows

and/or columns° )



3. Multiplication of all the entries in N by the same positive

constant°

Another operation leaves T's and Q's unchanged but reduces some H's; if

there is a variable X I in S with two values x I and x_ such that

= K.n (K O)

nXl,X 2 ,... ,XM X'l'X2' """'XM

for all values of X2, .o., XM (for two variables, if two rows or

columns are proportional), then N may be partially collapsed by

summing over those two values, i.eo, by setting

n'Xl,X2, oo.,X M nXl,Xp,...,X M + nxi,X2,... ,XM

n' =0.
x_,X2,o.o,X M

This last statement is a consequence of the Collapsing Theorem

which is proved and discussed in section _.2 .

We shall use these operations freely in what is to follow,

usually without an explicit reminder of their information-preservlng

property. The fact that variables can be relabeled freely is particu-

larly important in several proofs°

24

_.2. Collapsing theorems and their consequences

Introduction

The operation of collapsing a frequency table N over one of its

dimensions, say over the X M dimension, reduces the H and the T of the

table° If S = L3_XI'X2'°°°'XM_ and S' = tj_XI'X2'''''XM-I_ are the



original system and the system afte:r coiiapsing_ then

_(s') : _(s) - T<_ x:%_,ooo._Xm,i _ : _)

" x,)=T(_ ,-T(s' :

(Ashby 8 ), showing that, H and T both. de,cline by a nounegative amo_to

For interactions,

- Q(s') --Q(s)o %_(_)

The sign difference between the interaction equation and the others

is a consequence of the definition of Qo

The collapse of N over XM eorrespond.s' to, o:r implies, complete

disregard of %he value of XM_ NL_ the resui.+ _ is the table :for a system

in which XM is not considered a variable° As such, collapsing is a

valuable operation; but what if one wishes to keep XM as a variable

while losing the distinction between some of its values? For _xamp._e,

if XM takes values l, 2_ 3, 4, and 5, one might be interested only in

whether the value of XM is greater than 2_ or nOto A r.:ewvariable

X_ with two values could be in_rodu_ed, related to X by /x_

and a new system S' =iXI' X2' ooo, XM..1 _ X_Idefimed_ thi_. section

._o _' _ and Q(S}answers the question of how H(S) az_d E(_. _, T,<S) and T(S_ ), ' "_

and Q(S') would be related in that case°

2_



From another point of view, this section is important for the

situation in which a system (or its frequency table) can be observed

only through a mapping which loses information about the variable-

values, as would be the case, for example, if an observer were watching

the state-changes in a Moore automaton via its many-to-one output

function. The Collapsing Theorems give a means of evaluating how much

the H's, T's, and Q's would decline (or possibly rise, in the case of

interaction) due to the mapping.

.2.1. Collapsing lemmas

We consider a system S = [ X, Y_ and its frequency table

N(X, Y) or just N:

N
i

x1

x2

@

X .

e

xl

Y

Yl Y2 --" Ym-i Ym

nl,m-1 nl,m

n_l •.o n£,m_ 1 n2,m

We will partially collapse N over Y by combining the last two columns,

representative of combining any two rows or any two columns (see

section 3.1). To this end we define a new variable Z, related to Y

by the mapping _: Y --_Z:

Yl Y2 "'" Ym-1 Ym
/_ zI z2 ... Zm_ 1 Zm-i

26



The frequency table for _ = X_ Z is °_' j_._.....!_

Z

N

X

xI

x2

o
o
o

X

zI z2 ooo Zm_ I

ooo nl,_m_,1

n_, I ooo n_,m© I

N and N' are related by

I ni, j if j < m-i

ni,m_ 1 + ni, m if j = m_.l.

We denote the sum of the entries in the jth column of N by Nj, and of

course the sum of the Nj's by No The entropy of the jth column of N

will be denoted Hyj(X)o

The last two columns of N constitute a frequency table

N* = N*(X*,Y*):

y_

X _,

N _

xI

x2

o

o

x_

Ym_i Ym

ni,m.-l nl,m

eo
o o

ng,m_l n_m

2?

with column entropy H(X*) and row entropy H(Y*)_
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The transmission in N* is T(N*), and the sum of its entries is

N*. The Collapsing Lemma for Transmissions in this simplest case is:

Lemma III.i

T(S)- T(S')=

In words, the transmission lost through partial collapsing is

the transmission contained in the frequency subtable which is collapsed,

times the relative weight of the subtable.

Proof:

T(S)= H(X)- _(X)

m

= H(x)- j_=t fiN Hyj(X)

m-j_Z1 _-i _m HYm(X)
= H(x)- 5[

N Kyj(X)- -- Hym_l(X) - _-

m-2 Nm_I+Nm
T(S')=H(X)- _ 5i Hzj(X) _ HzmI(X)

j_l N N .

T(S)- T(S') _m-l+Nm Nm-i= N Hzm.l(X)- _ Hym.1(X)- -- Hym(X)

Nm-IN+Nm [Hzm-i (X)

_m
%-i ] li+NHym_l(X)-

N*[H Nm- Nm ]= _'- (X*) - --_ HYm_l(X ) - _-_ HYm(X)

= _-- H(X*)- .(X*

N*

= _-- T(X* : Y*)

Q. Eo D.



z9

The Co]lap_ing _mma for Encropy is

Lemma IIIo2

N_
(Y_ _H(S) - H(S') _ _.-- .X.,_

The entropy lost through partial collapsing over Y is the

entropy of Y conditional on X in the _ubtab_e being collapsed, multiplied

by the relative weight of the subtableo

Proof: H(S)= -
m

i=l j=l N N

m_2

=- Z I _ogf.i_.,_
i=l j=l N N i=l N

+ i-_m log -= ,
N

m-2 ' _ _ _m_lH(S') = - Z Z _ log ,_- Z n_"l log ......

i=l j=l N N i=l --N-_ N

H(S) - H(S') = _ Ini'm-I +ni_tmlog ni m-i +ni__m

i=l [" N N .....

- _N log _m.-:lN - ni"_mN log _N 1

= N*, _ In i,m=,l "_i_ log ni_ 1 _

N* N* N*: _. ]

_ [o_(x.)+H(x., ¥..)]

= N*
N

Qo Eo Do
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Extending the system to three variables, S = _W, X, Y_ and

partially collapsing over Y to get S' = _W, X, Z_ , we
obtain the

collapsing Lemma for Interactions. N* = N*(W*, X*, Y*) is the three-

dimensional analog of N*(X*, Y*), and the collapsing is understood to be

over Y*, i.e., over Ym-i and Ym"

i_I._
N*

Q(s)- QCs')= _- Q(_)

The interaction is lowered by the interaction in,N* suitably

weighted.

Proof:

Q(S)= Q(W,X, Y) = Ty(W : X) - T(W : X)

Q(S')--Q(W,X, Z) - Tz(W : X) - T(W : X)

Q(S)- Q(S')= Ty(W : X)-Tz(W: X)

%-i x) + _m x)
=_ Tym_l(W : _ Tym(W :

Nm.l+Nm

N TZm_l(W : X)

N +N
m-i m

N Tym_l(W : X) + mNm. l+Nm Tym(W: X)I%_i

- T (W: X)_
Zm-i J

=-- : x*) - T(W* : X*)
N

= N* Q(w*,x*_Y*)
N

N

Q.E.D.
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Since Q(N__) may be e:i5her positive, negative, or zero_ co:lapsing

dces not necessarily lower interaction as it does e:_tropy and transo_

mission.

The lemma for entropy can be rewritten, using the identity

in the form

N*
Hx(Y) -  x(Z) =

which makes evident the struct'aral similarity between it and the

other lemmas ; the form of each is

table, N _ f collapsing, N _ =N _ ubtable, N*

with only the operator f differing between the lemmas o

As an example of partially collapsing a two dime:sicnal table_

we collapse N(W, X) below over its first two rows, which constitute

N__(W*, X*), and obtain N'(U_ X)o

Original table: N(W, X) :

1

2

3

W

X

i 2 3

i 2 I

2 i 2

3 0 0

H(W_ X) = 2°689 bits

T(W : X) = 0.367 bits

N = i2o
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Collapsed subtable- N*(W*, X*):

X*

W*

1 2 3

1 2 1

2 1 2

Hx.(W*) = O.918 bits

T(W* : X*) = 0.074 bits

Table after collapslng:N'(U, X):

X

U

1

2

1 2 3

3 3 3

3 0 0

H(U, X) = 2.000 bits

T(U : X) = 0o311 bits

N' =12.

The entropies for the three tables are related by

H(w,X) - H(U,X) _ _ Hx.(W*)
N

2.689 - 2.000 = 9 o 0.918 = 0.689
12

and the transmissions are related by

N* T(W* : X*)T(w :x) - T(U: X) =_-

0°367 - 0o311 _ ° 0°074 = 0°056°
= 12

Collapsing N over its first two rows lowers the entropy by 0°689 bits

and the transmission by 0°056 bits°

The three lemmas hold also when the subtable is collapsed over

more than two Y-valueso Suppose a table N(X, Y) is to be partially

collapsed over its last k columns - the columns for YM+l,YM+2, ...,

YM+k - to get N_'(X, Z)o This could be done by collapsing the last two

columns (which we denote submatrix M (I) and whose entries sum to M(1)),

thus obtaining a new matrix _N(!!.(XI, Y1); next collapsing the last two

N* = 9°



columns of N (1) (ioeo, submatrix to get _-_X
, _...__ ..2_ Y2 }° arid so on_

finally getting N(k-1)(Xk®l, Yk=l) or _N_!!Xo._ Z_.o T(X _ v)_.arid T:_x__.,.._ Z)

would be related by

- o ,'. ,, o T(X2_-%]

"_'" o o e

= -..N-- :r( +

+ ooo a;.,

Consider the first two terms in the summat_.ono

_, T(M (2))
N

[ M(k_l) (M(k'_l.) 1N T " ) o

_ey 'tan be cembined

and rewritten as

M(2) [ + M<l:t ]

or, since M (I) is the sum of the entries :in the last %wo e(_l__<1.sof N,

and M (2) is the sum of the entries in the last t_hree columns of N_

this quantity may be written as

+

Nm+ k + Nm+k_l _]Nm+ k + Nm+k_ i + Nm+kT_ M(I;

The Collapsing Lemma for Transmissions states that this quamtity is

equal to

sum of the entries >
in the last three

columns of

N

X

I Transmission in the 1
submatrix comprising

the last three columns of
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An argument by induction leads to the conclusion that

Isum °f the entries _ / n__in the last k columns_ Transmission i

T(X : Y) - T(X : Z) = \ of N J |the submatrix |

comprising the |
N \last k columns

\ of __ /

or, more briefly,

T(X • Y) - T(X • Z) --N* T(_)
N

where N* is the subtable collapsed, with an arbitrary number of

columns.

Arguments identical in form to this one easily show that the

Collapsing Lemmas for Entropy and Interaction also hold when the

subtables collapsed have an arbitrary number of columns.

3.2°2. Collapsing theorems

These lemmas can be further generalized to a system of many

variables, S = _ X1, X2, o.., XM, Y_ , for which the frequency table

= N(S) is to be partially collapsed over the variable Y, with the

table N(S') representing the resulting system S' = _X1, X2, oo., XM, Z_o

We denote by N* the two-dimensional frequency table, with

< Xl, X2, °.°, XM>* the row-variable and Y* the column-variable,

which is to be collapsed by summing over Y*.

Theorem IIIol_Colla_i_em for Transmission, CITz@T._I_.

N* T(_)T(S) - T(S') --y-

_-_N__T(<Xl_, X2, ..., X >* • Y*)N M



35

Proof"

T(S) m ....= _X!:X2",_ ......:XM) + T(<Xi_X2_ _XM>: v)-

:XM) mt
T(S ) '-_

= Tb_I.:X2: ooo + _t<Xi._X2_ o0o_XM_: Z)

T(S) - T(S')-- T(<Xl, ooo,_>: y) o T(_.], oooJ_>: 7.)

N* m(
=__ _<XI,_ ooo_XM_* : Y*)N

Qo Eo Do

The last step follows directly from the Lemma for Tr_osmissions°

The CoT°To says that if a table is partially cclla;.sed over a

variable Y, the total transmission is lowered by _he transmission

between Y and the rest. of the variables, D:.ithe ¢ol.!a_se..i portion,

weighted appropriately°

From another point of view, the C oToTo says that _iewing a

system through a many-to-one mapping can never increase its apparent

constraint; if observer A views a system directly and observer B views

it via a mapping, the constraint between _ariables which is apparent

to A is always at least as large as t.he constraint between the variables _'

i_ which is apparent to B o

Theorem III o2 (Collapsing Theorem fo:r E.o._.ro___!o

N*

H(s) - H(s') = _- H._X:L_X2._ooo, XM>_(Y*)

Proof:

H(s) -- H(x., x2, ooo, _) + Z<xi, o.., xM>(Y)

_i's') --taxi, ooo, xM).+_ (z)
" <XI ' oo., XM>

• . _'"/"_, {z)HtS] - H(S') = H .v v _,, .;. "_ H...v y..._ .-
_i" °°°' "_M ..... i' °°°' "'M"

N _

M
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The last step follows from the Lemma for Entropy.

The C.T.E. says that collapsing over part of Y lowers the

entropy by the entropy of Y conditional on all the other variables, in

the collapsed portion, weighted appropriately.

To obtain the Theorem for Interactions, we assume that

N* = N*(X *, X2* , ..., XM*, Y*) is to be collapsed over part of Y*,

that is, over the y-values Ym+l' Ym+2' "''' Ym+k" We denote the (M + 1)-

variable interaction in N* by Q(N*).

Theorem III._ (Collapsing Theorem for Interaction; C.T.I.):

Q(s)-Q(s')--_ Q(_)
N

Proof:

Q(s)=_(Xl, x2, .o.,xM) - Q(xl,x2, ...,xM)

Q(s')=_z(Xl,x2, ...,xM) - Q(xI,x2, ...,xM)

Q(s)-Q(s')= %(xl, ...,xM) - _z(Xl,...,xM)

m+k

Q(s)- Q(S')= ][
J=m+l

%j(Xl'x2, ...,xM)

N _

- _- QZm+l(Xl , X2, ..., X M)

N* I m+k
--
N j=m+l

Nj (Xl' X2' ..., XM)
_* _j

- QZm+l(Xl,x2, ...,XM)]

N _ L

_- Q(xI*,x2*,...,xM*,Y*)

Q.E.D.



,9:S_ tn beSince interactions maybe negatlive_ it is _ossibi.e fc.r ,_._, ._

larger than Q.(S), in contrast to the situaticns for H and To ___.is

means that when a system is viewed througf_ a. many,=.to-one maFpimg _ the

interaction terms for _he image,osystem may be larger th_n those for the

original system, i oe. _ the system ma$ _ppear to be more complex llin

some sense) than it -- _-- is

3o2o3o Remarks on the theorems

At this point it should be made clear that although some of the

proofs have been stated in terms of "last rows _', "last columns '_, etco

for notational reasons, and have therefore _mplied that the frequency

tables are finite, minor changes in the proofs would remove that

implication; the CoT°To, CoToEo, and C oToIo apply also to nonfinite

tables o

Moreover, each of the theorems has a direct analog in terms of

continuous variables° For these, collapsi_._g over certain values of a

variable Y becomes integration over an interval of Y, and N_/N becomes

the probability of the collapsed portion of the distributlo1_o The

only place at which care is needed is in the distribution res_!.ting

from the collapsing; the probability whi_'.h becomes con_.entrated in

the collapsing process must be dispersed in a sheet cf finite thickness

to avoid a distribution which mixes delta '_functions" with finite

functions, for information theory cannot handle that mixture°

These three theorems - C oToTo_ C oToEo, and C oToIo _ have

several corollaries, among them the following:

37
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Corollary III.i

a) T(xI :x2 : ...:x_)= T(xI :x2 : ...:xM_l)

+ T(<xI,x2, ...,x__1> :xM)

b) H(KI,X2, ...,_) = H(Xl,X2, ...,XM_l)

+ H<Xl,X2'--.,XM-I>(X)

These equations, derived elsewhere in the literature, follow from the

C.T.T. and C.T.E. by collapsing over all values of XMo

The following corollary is a very important one for the decompo-

sition of system constraints, to be studied later. It says, for

example, that if X = < XI,X2,...,Xm > and Y = <YI,Y2,...,Yn> are

independent, then so are any X i and Yj.

Corollary 111.2

Let T(X I : X 2 : ... : X M) = O, where each Xi is a compound

variable < Xil , Xi2 , ..., Xini > . If X_ designates a compound

variable whose components are some or all of the Xij's, then

T(X 1 : X_ : ... : X_)= 0.

Proof:

Suppose T(X I : X 2 : o.o : XM) = O. The previous corollary

implies that

T(Xl:X2:... :KM_I)= 0
and

T(<xI,x2,...,__l>: xM) = o.

From the identity T(X: _ Y,Z 2) - T(X : Y) + Ty(X : Z) it follows that

<Xl ' > : X')T( ..., XM_I. : XM) = T(• Xl, ..., XM_1 M

÷T_(_El,...,XM_l>:<xM-x_-)



(where <XM-Y _ > is the compound varig,ble w._ose components are the

XM's not in Z._)o The left side of the equation is zero_ a<_d therefore
J

T(<X l, , xml>: _MJ =

Consequently T(X 1 : X 2 : ooo XM_I: XI_) = O_ for

=0 +0o

Similar analysis shows that

T(xl:x2: °°°: =o

and so on°

Qo Eo Do

The next corollary says, to pu_ it picturesquely_ that if an

observer of a system can sense only some of the values taken by each

variable, all other values registering only as "outside the range of

v!
the instruments, then he can at least deduce from his observations

some minimum values for the entropy and transmission of the whole

system°

Corollar II__

If N(S) is a frequency table and N_ is any _yperrectangul._r

portion of it, then

N*
a) T(N) _ _- T(N*)

• N* H(N__)b) H(_N) >_ _--

Proof:

Suppose a two-variable table N(X, Y) is collapsed over the

submatrix M*(X*, Y*) consisting of the last k] columns of _], the result

3cy
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being N'(X, Z)° Next suppose M* is collapsed over its submatrix

N*(X**, Y**) consisting of the last k2 rows of M*, the result being

M(W,Y*).

(a)

Therefore,

The following two equations follow from the C.T.To:

TCN) - T(_) = _ TCM*)
- N

N* T(_*)T(M*)- TCM_)=

M* N* T(_) ]T(__): T(_) + _- [T(_M)+

= T(_')+ M* TC_M)+ N* T(_)

N* T(_*)T(__)_ _-

where N* is the rectangular portion of N in the last kI columns and

last k2 rows° The generalization to more than two variables is obvious,

proving part (a).

(b) The following two equations follow from the C°T,Eo:

M* [H(X. Y*) - H(X*)]H(X,Y) - H(X,Z) =if-

Therefore,

H(X_ Y) : H(X, Z) + _-" _'_

,-H(X*) ]

: [H(X_z) M* H(x.)]+ M* [H _* ]- '_- _-- (W, Y*) - _-_ H(Y *_)

+ N* H(X**, Y**)
N

[ M* ] M* H(W)= H(z) ÷ Hz(X) ,-,'_'_-_(X*) + if'-

M*[ _* ]+ _-- HW(_)*) .-._;_' H(Y**)

+-_*-H(_)
N
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The first bracketed quantity is nonnegative, for HZ(X) is the average

entropy is the columns of N_, obtained by a weighted summationof the

M* H(X*) is the last term in the summation,individual column entropies;

and the first quantity in brackets is thus a weighted sum (of non,_

negative quantities) over all but the last column° Therefore it is

nonnegativeo _ne second bracketed quantity is nonnegative for similar

reasons, and thus

H(X, Y) = (a nonnegative quantity)+ N*F- H(N )

proving part b for the two-variable case° The generalization to more

than two variables is simple°

Qo Eo Do

_o2oh_ The e_uivalence of transmission and statistical dependence

Corollary IIIo4, which uses the next Lemma, shows that if a

two-dimensional table has zero transmission, its columns are proportional,

ioeo, that zero transmission implies statistical independence°

Lemma IIIo4

Let N be a 2-by-2 frequency table with T(N) = Oo Then one

column of N is a non-negative multiple of the other°

Proof:

The distribution N may be typified by

i a

(c o)
b abc

The second column is a multiple of the first if c = lo

expressed in terms of a, b, and c as follows°

T(N) can be
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1 i (1 + a + b + abc) log (1 + a + b + abc)T(N) = i + a + b + abc

+ i log 1 + a log a + b log b + abc log abc

(i + a) log (i + a) - (i + b) log (I + b)

- a(1 + bc) log a(1 + bc) .=b(1 + ac) log b(1 + aC)}o

Assuming T(N) = 0, expanding, rearranging, and cancelling, we obtain

(1 + a + b + abc) log (1 + a + b + abc) + abc log c

= (i + a) log (i + a) + (i + b) log (i + b)

+ a(l + bc) log (i + bc) + b(l +ac) log (i + aC)o

Calling the left side f(c) and the right g(c), this equation f(c) = g(c)

has a solution at c = l, ioeo, when the second column of N is a

multiple of the first. To show that there are no other finite solutions,

we note that

_c = ab _2 log2 e + log2(c + ac + bc + abc 2)

_c = ab _ 2 log 2 e + log_(1 + ac + be + abc 2)} o

f(c) equals g(c) at c = l, and for c > l, f(c) has a steeper' slope

than g(c); this implies that f(c) > g(c) for c > I. Similarly,

l
f(c) < gic) for c < lo Therefore, c = 1 is the only finite solution

C _to f(c) g(c), ioeo, to T_N) = Oo

Q° Eo Do

Corollary__llo4 _to C.ToTo):

Let, :N(X : Y) be a frequency table with m rows (of xi) and

n columns (of yj)o If T(N) = 0, then the columns of N are

all nonnegative multiples cf E(X)o Thus zero transmission

implies s_atistical independence°
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If N has zero-rows or zero-columns, they may be permuted to the

bottom and the right, and columns may then be permuted to put a positive

element in the (1, l) position; this permuted form of N we call N'o

Clearly if the Corollary is true for N _ it is true for No Suppose

= = o°

Corollary IIIo3 says that the upper left 2®by=2 submatrix of

N' (in fact, any rectangular submatrix) has zero transmission° The

last Lemma says that the columns of this submatrix are proportional,

ioeo, that the elements in the second column are kl2 times their row-

mates in the first column, with kl2 > Oo The same argument shows that

in the submatrix of rows 2 and 3 and columns 1 and 2, the same propor-

tionality holds, and so on for all elements in columns 1 and 2; all

elements in column 2 are kl2 times their rowmates in column lo

Similarly, the elements in column 3 are k23 times their rowmates in

column 2, and so Ono Finally, each of the columns is proportional to

the column-tableN'(X) formed by collapsing N__'over its rows°

QoEoD°

Of course if N(X, Y) has proportional columns it also has

proportional rows; this condition is equivalent to statistical indepen-

dence of X and Yo

It is well known that if X and Y are statistically independent

variables, T(X : Y) = Oo Corollary IIIo4 shows that the converse also

holds; that if T(X_i Y) = O,.then X and Y are statistically independent°

Thus transmission and statistical dependence are equivalent concepts

couched in different languageso
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The argument easily generalizes to many variables; if T(S) = O,

then any subset of variables in S is independent of any other (disjoint)

subset.

If the frequency table on hand is the record of an actual

experiment_ the transmission must cf course be interpreted in light of

the vagaries of random sampling° To date an adequate test for the

significance level of T has not been produced°

If a system contains many variables interacting in a complex way,

it is frequently impossible for a human observer to keep track of all

of them simultaneously° When this happens, it is common for the human

to observe a few variables at a time and then t:ry to piece together

the behavior of the whole from those observations° Such an attempt

sometimes succeeds and sometimes fails; we want to ask if there is any

theoretical 1.mi.tat±on on such an attempt, specifically witb rega.:rd to

the informatiou._theoretic quant_._ies involved°

To put the q_estion vividly: suppose an observer capable of

observing any N or fewer va:riables at a time is fa_:ed with a system of

N + i variables o Can he deduce the entropy, total transmission, or

highest._order interaction of tb.e system? To approach the problem we

define a few terms_

By a sim___ ex.]2ress_.o:F_'we will mean a single entropy, transmission,

or interaction term e_Lplicitly ._nvci_ving va_riables .-e ogo, H(X),
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(< XI, X2_ , X3_ X4)o .An ex_x2,ression is a sum ofx > :Y>,Qxl •

simple expressions°

Any simple expression is either identically zero (such as

Tx(X:Y)) or may be reduced to a __ion, in which no

variable appears explicitly in both subscript and argument_"for example,

the third example above is identically equal to QXl(X2_ X3_ X4) , which

is proper° The order of a simple_exr_ion is zero if the expression

is identically zero; otherwise it is equal to the number of distinct

variables appearing explicitly in the expression, whether or not they

are considered to be components of compound variables° The examples

above have orders one, four, and four° The order of an expression is

the largest of the orders of its simple expressions°

It would be useful to find order_reducing identities - identities

which would express a simple expression as a sum of lower-order

expressions, thereby allowing one to view a compi.ex relationship as

merely a summation of simpler relations° This is indeed possible

through the device of an auxiliary equation; eogo, if <X,Y > = W

then H(X, Y) _H(W)o However, barring the use of auxiliary equations,

no order-reducing identity can exist; relationships which genuinely

involve many variables can not be broken down°

Theorem 111o4

Let f m g be an identity in which f is a simple expression

of finite order M and in Which g is an expression of order

K _ M (and involving the same variables)° Then K = M, Joe°, g

contains a simple expression of order Mo
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Proof:

(a) We first prove the thecrem when f is an unsubscripted

entropy, f = H(X1, X2, ooo, XM), by supposing K <M and obtaining a

contradiction° We define two distributions on S = _X l, X 2, ooo, iX} ,

where each X. has two values, 1 and 2°
1

The first, N(S), is defined by

=2 [(X1 + X2 + + XM) , mod 2]
hl'X2'°°°'X M °'°

and the second_ N_L'(S), is defined by

XI,X 2 ,ooo,

For example, with M = 3 they are as follows:

N_

X2

1

2

X 1

1 2

2 0

0 2

X 3 = i

I 1

1 I

X 2

X 1

1 2

1. 0 2

2 2 0

_:3 = 2

1 1

1 1

To calculate any simple expr'esi_io_:.;involving fewer than M variables

necessitates collapsing N and N _ ove:r the variables omitted.; when thus

dl_rlbu4.o ....... and consequentlycollapsed, N and N _ yield idenlical "_ .... t.'._

identical values for go The two d.is_,r:ibutions yield different val.ues

for f, however ...an imF.ossible ccn.d:[tion :_f f =_ g is an identity°

(b) If f is any simp].e e_pre:_:_cn of crd.e:r M, identities of

,_ .. _t8the following form .._L_., :



f h ± H(XI, o XM)

where h is an expression of order less than Mo Thus f _ g may be

rewritten as

+ H(Xl, _ ooo, XM) _ g _ ho

Part (a) showed that the expression on the right is of order M_ since

the order of h is less than M_ the order of g m_t be Mo

Qo E,_ Do

The theorem does not say that both sides of any identity

must have equal order, and in fact thatis not true; for example,

H(X,Y) - _(Y) _H(X)o

it does mean that if a set of variables are attuai!y related iu a

holistic manner, the relation cannot be broken into a sum of simpler

relations without something being losto While zhis is perfectly true

in general, in many cases of practical interest a high,_order rel_tion

can be broken down without losing _'too much°" In section 4°3 we will

study systems which lend themselves to such decompositions°
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3°4 Maximizing transmission between related variables

Introduction

An important problem is the following° Suppose X and Y are

variables taking values from sets X = [ x i I 1 a i <_m} and

Y = [yj I 1 __j <_ n} , and suppose RcX x Y is a relation between

X and Yo How should the frequencies in N(X_ Y) be distributed exclusively



over the couples in R so that T(X : Y) is maximized? In other words,

how can the transmission be maximized with respect to the constraint R?

While this is an interesting problem in its ownright, the

answer is really crucial for the understanding of channel capacity°

For as will be explained in the section on that topic, the description

of a channel linking supervariables X and Y is in fact the description

of a relation between X and Y, and the problem of maximizing TL(x : Y)

(i.e., finding the channel capacity) is the same as the problem

considered here, only with limits involved@

It will be shown in the chapter on regulation that the trans-

mission between the regulator, R, and the variable it is regulating

against, X, is of prime importance in regulation° This section is

therefore also of importance to regulation, particularly when there is

a relation between R and Xo
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3o4.1o The theorem

We start by denoting the matrix version of R by

= with
R [rij] m,n

rij =I ol ifotherwise<Xi$YJ_ois in R,

We consider here only frequency matrices N_X,Y) = [nij ] m,n compatible

with______R,ioeo, such that couples not in R occur with zero frequency°

Nothing is lost by restricting attemtion to cases in which m <_ n and

R has no zero-rows or zero-.columns o _,in,_ the argument involves

permutations of the rows and columns of N and R, it will be assumed
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henceforth that when one matrix is permuted, the cther is permuted in

the same way° We denote a permuted form of a matrix with primes°

For every R, there is at least one "largest one,s,to-one mapping _

_having the following properties:

i) c R,

ii) _ has domain Z c X, where Z contains k elements and k _ m,

iii) /_ maps Z one_to-one onto a subset ef Y,

iv) no other mapping exists Which obeys (i), (ii), and

(iii) but on a larger domain than _ o

The number k, giving the number of elements in /_'s domain, is dictated

by R and may be denoted k(R)o

The distribution No, with

I 1 if _xi, yj> is in /_
nij =

0 otherwise,

gives T(No) = log k(R). It is always possible to make T(X : Y) = log k(R),

by assigning equal frequencies to the couples in /x; however, by that

assignment it is possible that certain values of X and Y, not excluded

by R, would be assigned zero frequency° Consequently H(X) and H(Y)

would be lower with the assignment N o than with some other distributions,

and since

T(X : Y) = H(X) + H(Y) ® H(X_ Y)

there is good reason to suspect that some distribution other than NO

will maximize the transmission°

The answer to the question Fosed above is given by:
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Theorem IIIo_

Suppose R is a subset of X x Y. Then for any N(X_ Y)

compatible with R,

T(N) <_ log k(R)o

and thus No above maximizes T(N).

To state the theorem somewhat picturesquely, X and Y can

communicate best through a one-to-one mapping, even if the price of the

biuniqueness is that some of their values never get l_ed. It doesn't

pay, as far as transmission is concerned, to introduce more values if

their introduction brings in ambiguity°

Proof:

If k = m, the theorem is obviously true since T(N) _ log m for

any distribution N; the smaller dimension of a matrix limits the

transmission. If k < m, we need the following Lemma:

Lemma III o_

If k < m, R may be permuted to a form R*, which in partitioned

form is

R _ =

A la B J C

E _ F
D i - J --

'H IIG l -- -

and in which the square submatrix (A, B_ D, E) has an ascending diagonal

of k(R) l's and the submatrix (E_ _ H, I) is a zero matrix°

Proof of the Lemma_

The mapping /A prescribes in a natural way a permutation of R

r s across the upperwhich displays an ascending diagonal of k_R) l'

5O
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left corner of the resulting matrix_ these l_s corresponding to

couples in the set _o Pictorially, R' is then as sho_ in Figure 63

with the diagonal line representing a string of l's.

The submatrix _ must be a zero matrix_ because if there were a !

in _, row and column permutations could, append it to the existing

diagonal° Henceforth we w_ showzero _o÷_ by _aa_ng_

The rows which contain l's in J may be movedto the top of R',

and appropriate column permutations, always possible, maybe performed

to preserve the diagonal of l's intact° This done, R" is as shownin

Figure 7, where J1 has no zero rows° Now E2must be a zero matrix,

since otherwise a column permutation could put a 1 in !_ While preserving

the diagonal°

Next, the columns which contain l_s in K1 may be moved to the

left and appropriate row permutations performed to preserve the diagonal°

This gives R"_ , shown in Figure 83 in which _ has no zero columns°

The process is now repeated with M, N, and P playing the parts

of _, K_ and L; _ must be a zero matrix, for if it were not, a sequence

of column permutations could put a i in L while preserving the diagonal°

If there are no rows with l's in M, the Lemma is satisfied; if there

are such rows, they may be moved to the top of M and the diagonal may

be preserved through column permutations° Next the columns with l's

in N, if any, are moved to the left side of N while preserving the

diagonal, giving _,R(4) shown in Figure 93 where J1 and M1 have no zero

rows, and K3 and_have no zero columns°



52

R I = J

I
I L_
I

Figure ,6o

R" =

/ Ji

Figure '7°
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R
|li

Figure o

(4)
R

Figure 9o
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R' must endThis process, iteratively applied to any matrix __,

either by disclosing a 1 in a position incompatible with the hypothesis

that the diagonal is maximally long, or else by completion of a rectangle

of zeroes which "touches" the diagonal. This proves the Lemma.

Note that the process described amounts to an effective procedure

for finding the largest one-to-one mapping contained in R (or one of

them, if there are more than one).

Returning to the proof of the theorem, we assume R has been

perm_ed to the standard form R* and that the distrib_ion N, _speci-

fled as yet, has been similarly permuted (so that it too has the large

rectangle of zeroes).

N _

Nll

N2_!l

5!

 I_A2

where

F I

I
I.... I

II i

L ,'
=0o

Suppose now that N* is partially collapsed by adding together

the columns in the right-hand submatrices, obtaining Na:

N a

Nll

N21

N

--3!

O

0

where

- 7
_MI_I

0 has one column°

We recall that permutations do not alter transmission; therefore

T(N__*) = T(N). The C.T.To (theorem III ol) consequently states that
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N12 + Nl_
T(N) = T(N a) +

N

NI2 + Nl_

NI2 1 Ni_
__-__ I

T 0 i 0

0 I 0
I

%

([ '!T N1._
\

1
Suppose we are given an arbitrary Na and we set about to maximize ±t_3

by adjusting the frequencies in NI 2 and NI3o The row sums are fixed

(by M1, which is in Na)_ Recall. that B, the submatrix of R* corresponding

to N12 , has an ascending diagonal of l's; hence, the row totals for

(N12 , N13 ) can be assigned to the diagonal positions in. N12o That

assignment maximizes T(N) without assigning any freqo.en,_y to N!_oo If

N13 is not needed for an arbitrary fag it i.s not needed for _he Na

which maximizes T(N), ioeo, there is an N_which maximizes T(N) and for

which N13 = O o

The last conclusion is the heart of the proof, for maximizing

T(N_) when N is

N _.

I
Nll i N1,__2

.... i

N2i i o
_f

N31 I 0

_ |

2

C

,

is easily accomplished by setting

nij

I if no_ is on the ascending diagonal_
'I_

ice , if i + j = i _ k(R_

0 otherwise,

Qo Eo Do
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3.4°2° An attempt to generalize the theorem

Let R be a system relation on S ={ X I, X2, ooo, Xi, ooo, XM_o

Then R contains a largest subset _ such that (i) for every Xi in S,

the projection mapping pr i maps _ one_to-one onto a subset of Xi, and

(ii) no other mapping satisfies (i) and has more elements than _o

Letting k(R) denote the number of elements in _, it is tempting to

conjecture, as an M-dimensional generalization of the above theorem,

that for any N(S) compatible with R,

T(N)<_(M-l)logk(R)o

However, the generalization does. not always hold for M > 2o For

example with R = S = {X, Y, Z} the following N(X, Y, Z) has T(N) == 3,

but (M-l)log_(R)= 2 log2 = 2°

X X

1234 1234

i 0 0 0 0

2 0 0 0 0

3 0100

4 i o o o

Y

0 0 0 1

0 0 I 0

0 0 0 0

0 0 0 0

Z=l Z=2

After introducing some new notations to deal with dynamic

variables, we will apply the results of this section to the problem of

finding the channel capacity for networks of automata°



3.>. Information quantities for dynamic variables

Introduction

We normally think of a dynamic variable, e.g., X(t), as one

which changes in time. A semantic and notational confusion results

when we wish to consider both (1) the variable X(to) , i.e., the

variable whose values are the possible values of X at the specific

time to (but with to arbitrary), and (2) the variable X(t)• i.e., the

variable whose values are the possible trajectories X can take over an

extended time interval. To distinguish the instantaneous - from the

trajectory-variables, we call the first simply a variable and the

second a super-variable. _T_e two are of course related, and in this

section we will explore that relation as regards the information

quantities involved.

In later sections on channel capacity, information transfer,

and regulation we shall rely heavily on the concepts of this chapter.

_._.i. Definitions for limit-quantities

frequently happens that a system S = [ XI, X2, ...._ isIt

composed ofvariables all having the same statistical distribution, or

is composed of groups of variables, all within each group having the

same distribution. A stationary regular Markov sequence

Xi-I Xi Xi+l
o.., , , • ..o

where the superscripts denote successive instants in time, and the

states in a chain of identical MWI'S,
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where the subscripts denote successive positions in the chain, are

one-dimensional examples. For such a system, certain limit-expressions

are meaningful and have profound interpretations in the study of com-

plex systems° We will denote these limitroexpressions with a superscript

Lo At the start, a word about notation is in order° We will use

subscripts in this section and elsewhere to distinguish variables or

super-variables which are being thought of as different in nature; we

will use superscripts, on the other hand, as indices for time° For

example, X1 and X2 might be a set of temperatllre_values and a set of

humidity-values respectively; the variable "temperat_ze at time _ "

IY

would be denoted X 1 and the variable "humidity at time 7" would be

denoted X27o

To simplify notation, we. define the su_per-variable X or the

s-variable X as follows:

- XI _ X iX ----< _ , ooo_ _ oo°

corresponds to an indefinitely long strip of a protocol,

time: 1 2 3 4 5 ooo i ....

x3 x4 _5 ooo x_

and one value of X is one possible way to fill in the protocol° Of

course X _ may have components, say if X_ • _, V_= _ ; then

X = <U,V> is a supervariable with components°

We define a super_system 'S'as an ordered set of super,.,variables:

tIt is important to distingaish 'S= { _:i' _:2 , a supersystem of
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supervariables, from <XI, X2> , a supervariable witch compo_entso

The latter corresponds to a protocol of two strips,

F

whereas the former corresponds to a set of protocols:

I _ 2 3 2_ _ 2 _ 4

Thus the prefix super- or s_ and the overbar imply variables which are

really infinite vector®variableso We will use the term "variable",

henceforth, to include both ordinary_- and super_variables, using the

prefix only when a super_variable is expressly implied; likewise the

term "system" will include both types, so that a super_system is also

a system.

We denote the limit®entrop_ or L_entropy of _ by HL(x)

and define it by

_(_) = lim ! H(XI, 2, ooo_Xn)
n_m n

if the limit exists° The n-th term in the sequence is what Shannon 5

calls GNO Similarly, the limit-entropy of a super_system

S = , , ooo, is defined as

=n÷® n H ,x_, ooo,

lim 1 H(<SI_. , <$2> , ooo, <sn>)o
n-._ n

The notation is slightly redundant in that L.-entropies are

defined only for s-variables, but this redund_ucywill be kept, for
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emphasis. Continuing the definitions in their general version, we

define the L-entropy of Sa conditional on Sb by

And so on. The definitions for all simple limit expressions, except

for HL(_) and HL(s) which are primary expressions, are obtained from

the analogous non-llmit definitions by superscripting with L, and

overlining all variables° For example, the L-transmission over _ =

_XI, X2, o.. _} is defined by

By a simple limit-expression we will mean a single L®entropy,

L-transmls_on, or L-interaction term explicitly involving s-variables,

e.g., HL(x), TXL-(W:Y)o A limit-expression is a sum of simple limit-,

expressions°

The relation between non-limit identities and limit-identities

One of the post powerful theorems in information theory is the

one which states that an identity in simple expressions remains an

identity if the sane subscript is added to each simple expression 9.

The reader might be tempted to suppose that an identity in

simple non-limit expressions remains an identity if each term is

superscripted with L and all variables are overlinedo Since the

definitions for all L.-.trans_iss_ons and L..,i:ateractions are related to

the non-,limlt definitions by precisely that operation, the supposition



is clearly true for identities not involving entropies° If entropies

are involved, however, the supposition is by no meansobviously true,

for a limit-identity has on its two sides the limits of two distinct

sequences, and to establish the identity these limits mast be shown

to be equal°

_lT_eoremTTT

An identity in simple expressions remains an identity if

superscript L is added to each simple expression in it and every

variable is overlinedo That is, every non®limit identity implies

a corresponding limit-identityo

Proof:

Let f _ g be an identity in non-limit expressions _ involving

variables Xl, X2, .oo, XM:

f(X l, ½, .o._ XM)- g(Xl, X2, ooo_XM)°

Substituting <Xl, _l' °°°' X_> for X1, <Xl, ooo, _ for X2,

and <_l _, ooo, _> for XM,another identity is obtained:

f < ,ooo >,ooo, • ,ooo, -- g _ ooo >_ooo_

etc o,

The identity is preserved if both sides are divided by n; therefore,

for all n _ I we have

n f < ooo, >,ooo,_ ,ooo_ =--__ g < ooo >,°o.,

Our

identically equal; each of these limit_.expressions represents the limit
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of a sequence, and to showthem equal we must showthat the two sequences

converge to the same limit. That they do follows from the fact that the

two sequences are equal in every term, and that is the case since in

the last identity above, the expression on the left is just the n-th

term in the sequencewhose limit is fL(Xl, X2' °"' _) while the

expression on the right is the n-th term in the sequence whose limit

is _(XI' _' "''' _M)"

Q.E.D.

Deeper exploration of limit-expressions and their profound

importance for complex systems will be deferred to a later section;

here it will suffice to state that HL(X) is the information (per step)

carried in the sequence _X 1 and TL(x : _) is a measure of the linkage

between the sequences IX} and {YI' per step° When X is the input

and _ is the output of an information channel, TL(X : _) is the

amount of information usually thought of as "transferred through"

the channel, and it is bounded by the channel capacity. We will

take up the subject of channel capacity in the following section.

3.6. Channel capacity_ constraint capacity, and the capacity of

automata

Introduction

The notion of channel capacity is one of the most fundamental

in information theory° It applies, classically, to an "Input-output"

system and is the limit on how much information can be pushed through
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it per unit time° We will show here that the notion need not be

restricted to "input-output '_systems nor to systems with only two

"terminals;" the generalized notion will be referred to as constraint

capacity, to eliminate the connotation of unidirectional flow that

°@the word "channel" carries° Co_straln_ capacity will reappear in a

_'_ ..... _^ __+_ _ _a_n_S in alater chapter, when we _i_o .......... _.....................

dynamic system, as an upper bound for the linkage between two or

several dynamic variables in a dynamic system°

In later chapters on regulation in dynamic systems, it will

become apparent that the channel capacity of a regulator is oI_

fundamental importance for its capacity as a regulator° Since a

regulator is not always describable as either a machine with input

or a mapper alone but can usually be described as an automaton, the

calculation of the capacity of automata is of prime interest to this

study, and a method is presented in this chapter by which that calcu-

lation can be made° The method allows calculation of the capacity

for any network of interconnected automata, in fact, and it produces

as a by_product the information necessary to construct a source matched

to the network so as to realize the maximum information flowo

_o6olo Channel capacity and constraint capacity

We consider a super-system S = X,_ in which X is the input

s-variable for a channel and Y is the output s-variable:

-I Channel • g
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A particular value of _ = (xl, _, ...> is a partic_ar sequence

of inp_ symbols to the channel, X i being the inp_ symbol at time i.

The channel specification is in fact specification of a relation R in

the product set X x Y, and the channel capacity is defined by

where the maximum (or least upper bo_d, if there is no maximum) is

over the various distributions N(X, _) compatible with R.

For many channels of practical interest, the order of maximiza-

tion and limit-taking may be inverted, giving

C lim i [max T(<XI, X2 . xn yl, _, ..°_= _ , . ., >:< yn>)
n@_ n

The maximzation is that considered in section 3@4, namely maximizing

transmission _der constraint by a relation°

_e relation specified by a deterministic input-output channel

is normally a mapping _om _ (and perhaps the channel's initial state)

into _; for such a channel, _(_) = 0 and therefore

C = max _HL(_)_ o

The characterization of the channel as "input-output" derives

from the relation R, not from X or Yo By considering arbitrary relations

on arbitrarily many super-variables, we can generalize C to the notion

of "constraint capacity" of an object. Supposing there is a super-

_= _XI' _2' "''' _M_' and the object specifies a relation R;system

R=xq 2 x ... xxM,

the constraint capacity of the object is denoted C and defined by

c
with the m_xim_ (or i. u. b.) taken over all the possible distrib_ions

N(S) compatible with R.



It may strike the reader as pres_mptous to speak of a relation

in a set of infinite size. In practice, of course, R is us_lly a

highly iterated version of a very simple relation on a finite set.

For example, if X and Y are the input and state supervariables for a

MWI with mapping f : Xi x yi __yi+l then

<X, Y>is in R 4=>for every i _ l, <X i, yi _.i+l- - > is in f,

where f is viewed as a relation in (Xi x yi) x yi+lo R is thus shown

to be an expanded version of the three-variable relation fo

The treatment thus far has not differentiated between "noisy"

and "noiseless" channels. That topic will be taken up in section 3.6.4.

_qo6.2o An example of constraint capacity

As an example of .... +_o_+ _o_÷v _n mor_ than two dimensions

we define a relation R on _ = { X, Y, Z}, where each of(variables),

the s-variables takes, at each step, one of the values i, 2, or 3:

<X, Y, Z > _ R 4=> for every i _ i, X i, yi Z i, and

all take different values, and

yi > Z i if i is even, yi < Zi if i

is odd.

This is equivalent to

<X, Y, Z > e R4_ if i is even, <X i vi Zi, _ , > is

<2, 3, i>, <3, 2, i>, or <i, 3, 2 >;

if i is odd, <X i, yi Z i, > is

<3, i, 2>, <i_ 2, 3>, or <2, i, 3>.

The distribution N(X i, yi, Z i), with

n_ = n = i; oLbe±-_ zero
_,2,i 1,3,2

65



66

when i is even, and

n3,1, 2 -- nl,2, 3 _ i; others zero

when i is odd, maximizes both T(X i : _) and T(<X i, _7'. Zi); there-

fore it maximizes T(X i : yi : zi), at 2 bits. The extension of that

distribution maximizes TL(x : _ : Z ) at 2 blts/unit time, so the

constraint capacity associated with R is 2 bits/unit time. The relation

represents a real constraint, since with no constraint (R = _), the

constraint capacity would be log 9 = 3o17 bits/unit time.

3.6°3. Channel capacit _ of Moore automata

3.6._.i. The theorem

Viewing the object (the "channel") as a set relation has led to

the solution of an outstanding problem - that of finding the channel

capacity of an arbitrarily connected network of MWI's, mappers, and

Moore automata.

Consider a finite network of arbitrarily interconnected Moore

automata, as in Figure lO where the circles represent automata and an

arrow from one circle to another indicates that the output symbols

from the first automaton are input symbols to the second. Further

suppose that the network acts as a communication channel from a Source

to a Receiver, the "input automaton" accepting only Source symbols as

input and the Receiver observing the output symbols of the "output

automaton" only. This section will provide a procedure for evaluation

of the channel capacity of such a network and of its component automata.

There is no loss of generality in assuming that only one

automaton accepts inputs from outside of the network, that there is
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I Source I

Network

[Receiver

Figure i0.



only one Source, that the input automaton accepts only Source symbols

as input, or that the Receiver observes only one automaton; all other

cases may be reduced to this one by nominally combining elements,

recoding the descriptions of elements, or introducing one "delay

automaton°" None of these modifications affects the channel capacity

of the network.

The network itself may be viewed as a Moore automaton, of course,

so that the problem of finding the capacity of a network reduces to

that of finding the capacity of a single automaton° On the other hand,

each arrow in Figure 10 can be thought of as a unidirectional channel

and may be labeled with its channel capacity, which is the capacity of

the automaton from which the arrow emanates° One upper bound for the

network capacity 10 is the minimum value among all simple cut sets,

where the cut sets separate the "input automaton" from the Receiver and

where the value of a cut set is the sum of the capacities of branches

in the set (but only counting branches directed from the input toward

the receiver). Thus the calculation of this upper bound for network

capacity also requires the calculation of capacities of single automata,

to which we now turn. The method, in essence, is an application of

theorem IIIoS, setting the input and output sequences in biunique

correspondence°

We Consider a Moore automaton A with a finite input alphabet

IXl, x2, ooo, Xk_ = X, a finite state set {Sl, s2, ..o, Sm_ = S, a

finite output set _Yl, Y2, °'°, Yn_ = Y' a state function f:

and an output function g: S-_Yo See Figure llo
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The state-transition matrix A = [ _ij ]m,m for A is defined by

I i if _x E X Sot. f(x, si) = sjij = 0 otherwise

] ,l_p_n, byand the related matrices _p = _ijp m,m

i_ij if g(si) = yp_±jp
0 otherwise

7O

Row si of A_Aindicates with a i every state-transition si-_s j allowed

by f, and Ap, i _ p _ n, copies those rows of Arepresenting states

which g maps to yp.

For a discrete channel such as A,

lim i [ T(_XI, X2 ' , XT_: (yl, y2, yT_) ]C = T_ _ max ...... , o

There is at least one sequence IX1, X2, ooo, XT_ for each sequence

[Y1, Y2, "°°, YT_ , and from Theorem IIIo5 it follows that

log (T)Cy = T÷_

where Ny(T) is the number of output-sequences of length T allowed by

the input andthe set relation prescribed by Ao Shannon gives the

expression above as the definition of C for a discrete channel5o

We denote by Ns(T ) the number of state-sequences of length T;

Ns(T ) and Ny(T) yield capacities Cs and Cy respectively° Cy is the

capacity of Ao

Cs may be calculated from A by a method due to Shannon; he

shows 5 that if A represents the allowed state-transltions, _ the

identity matrix, and Wo the largest real root of the determinantal

equation



then Cs is given by

Cs = log2Woo

=0

If g is a one®to®onemapping, each state-sequence yields exactly

one output_sequence; in such a case Ns(T) equals _y__) for all T,

Cs = Cy, and the capacity of A maybe calculated directly from AAo If

g is not one-to-one the convergence introduced by g will force Ny(T)

to be smaller than Ns(T)o To find Cy in such a case we systemmatically

A", o with their relations R' R"substitute new automata A', etc , , , etco

in _ x _ being each a proper subset of its predecessor, until an

automaton A* is found for which

lim 1 lim 1 log oT-_ _ log Ns.(T ) = T_m _ Ny(T)

That is, Cs. = Cyo

The sequence of automata A, A', A", .oo, A* can be formed in such a way

that the state-transitions becomeincreasingly constrained while the

output®transitions do not, so that Cy may be found from the state-

transition matrix for A*, which we will call A*°

Wedefine a _ap_l_ se____tP as a set containing two or more

state-subsequences of the form

{Si, S, S_, ooo, Si_n_ (n _ 2)

all compatible with A, all identical in first and last states, and

all of which are mapped by g into the same output-subsequenceo

If a parallel set P exists, an observer seeing only the corres_

ponding output-subsequence is unable to dete_ne which state-subsequence
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in P has caused it, but the observer's uncertainty can be minimized

as follows. Given A, one can generate all the state-sequences of

length T allowed by A. If a parallel set P is found, the constraints

on state-transitions can be increased, eliminating members of P until

exactly one sequence in P remains allowed; this is always possible, and

it amounts to the substitution of a new automaton A' capable of the

same number of output sequences as A but a smaller number of state-

sequences. One can next generate all the state-sequences of length T

allowed for A' and so on. Reiteration of this process will eliminate

all parallel sets of length T and will lead to a collection of no more

m2Ny(T) state-sequences, since for each first-state, last-state pairthan

(of which there are at most m 2) an observer of the output-sequence (of

which there are N(T_ would correctly assign one state-sequence. More-

the collection will contain no fewer than Ny(T) sequences, sinceover,

the elimination process always leaves, for each allowed output-sequence

of A, one state-sequence capable of generating ito This process, then

_Tprovides a sequence of numbers, No_ ), which give a capacity Co:

Co = lim ! logNo(T)
T_ T °

From the inequality

2

Ny( ) No(T) m Ny(T) forallT 1

it follows that Cy = Coo Since C o may be found from_A* by Shs_nnon's

method, the foregoing justifies the following theorem:

Theorem IIIo7

Let Wo be the largest real root of the determinantal

det [ A___*- W-1 ] = 0o Then the capacity of A isequation

log Woo



A__*embodies the original state®transition ccnstraints and the ones

introduced by the elimination procedure, at the point where no f_rther

elimination is necessary°

This calls for several comments° First, unless the transition

eliminated is a first,_order one (eogo, eI -_ ss) the states must be

recoded and the ........ _.... redra-_ _o +_ elimination _an be

made° For example, elimination of a third-order transition (eogo,

< s2, s4, sI > -_s5) requires that the states be reooded into triples

(e.go, (s2, s4, Sl) = s241) and that the corresponding matrix be con-

structed before elimination of the transition (eogo, s241-_s415)o

Corresponding changes in the domain and range of g mu/t. be made° The

effect of this relabeling is to increase the size of the matrix at each

step unless certain simplifications are possible; in the Example, some

common simplifications will be illustrated°

Second, if at the Mth iteration of the process the matrix, call

it A(M), has become too large to make continuation .feasible, an

approximation to Co can be obtained by using A__in place of Am*;

such an approximation, CM, satisfies the inequalities

Cy _ CM _ CM_ 1 _ CS (M _ i)o

Finally, there exists a procedure, given below, for deciding

whether or not further eliminations are necessary, ioeo, whether or not

= ^..

We proceed next to outline the process in terms of matrix

operations°
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_.6o3o2. Calculation of capacity

Sets X, S, and Y and functions f and g are presumed given. As

the iterations proceed to substitute new automata for the original,

S, Y, f, and g will change accordingly° To simplify the notation we

will assume, however, that S has m elements and Y has n (m >l, n > l)

at the start of each iteration, signaled by a pass through Step l, and

we will call the transition matrix A throughout°

Preliminary

If S can be partitioned into disjoint subsets such that no

state in any subset has any transition to any state in another subset,

then A is a merely nominal conjunction of smaller automata, one of

which is selected by choice of the initial state° The capacity of A is

then the largest of the capacities for the smaller automata.

Transient states, which cannot be reached from any other state,

as well as persistent states, which cannot lead to any state other than

themselves, may be dropped from S without, affecting the capacity° If

S is empty afT,er all such states have been dropped, the automaton has

a capacity of zero°

Construct A_ and A__ i _ p _ n as previously defined°

Step Io

Observe the _matrices to see if there exists any column of

any Ap containing more than a single lo If so, proceed to Step 2° If

not, no further eliminations are necessary, as the comments for Step 2

will explain; proceed to Step 5o
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Comment on Step 2

_+o -° o

{w!tnThe successive postmu_ipllcatlons of a row vector Ej ....

eij equal to i and the other elements all zero) by A, Ap2 , Ap3 ,

oo, ApT corresponds to the constructicn of state-sequences starting

with sj and passing through states in the sets g-i (ypz), g-l(yp3),

oo°, g-i (YPT)° For Ej__A indicates by its nonzero components the set of

states reached in one step from sj, Ej A Ap2 indicates those states

reached in two steps from sj via some s in g-l(yp2), and so Ono If a

vector component equal to K _ 1 results from the mu_[_±plica_ion, there

must exist a related parallel set containing K sequences° Conversely, if

a parallel set never occurs, it must be the case that no vectors ever

arise from the multiplications which, when multiplied by any _, yield

a vector component greater than lo Clearly, if no column of _

contains more than a single l, multiplication of a vector of zeroes and

ones by Ap can give rise only to components of zero and one°

Define T1, a set of row vectors, as follows:

T 1 V1, V 2, ooo, where mVi _ i, oo, im °

Start the following substeps with N = io

Generatethe ofvectors% = i p n, V i

For N = l, these vectors are simply the rows of the matrices

TN} o

AA I, AA 2, ooo, AAno



If any vector in QNhaS a component greater than i, go to Step 3o If

none has, go to Step 2bo

Step 2b.

Form the set TN+ I = TNU QN o If TN+ I = TN, go to Step 5. If

TN+ I _ TN, increase N by i and return to Step 2ao

Comment on Step 3

Entry to Step 3 results from the production of at least one

vector in QN containing, in say its jth column, a number K greater than

I. The vector, produced on the Nth pass through Step 2a, corresponds to

the existence of a parallel set P containing K distinct state-sequences,

each of length N + 2 and each ending with Sjo All but one of the

sequences in P must be eliminated° To every component greater than i,

of every vector in QN, there corresponds such a parallel set requiring

eliminations.

Step 3.

Find the parallel sets by retracing the steps of multiplication

which led to the vectors in question and by consulting the function go

Once the sets are known, all but one member in each set must be declared

examples of illegitimate transitions (of order N + i). Rewrite the

transition matrix to show the previously allowed transitions of order

N + i and modify it (by substituting zeroes for the ones corresponding

to the newly illegal transitions) to form the state-transition matrix _AA

for Step 4o S, Y, f, and g must be modified to reflect the relabeling

of states described earlier.

%



Step 4o

Remove transient, persistent, and is_olated states from S as

follows° If there exists a state sk in S such that row sk or colunun sk

in Acontains only zeroes, except pez-haps on the main dlagcnal_ remove

sk from S and revise A accordinglyo Continue removing states and

revising A - _D un_ every row and col,_ contains at least one off_diag-

onal io

From the resulting A and g, construct the _matrices and

return to Step io

Comment on Step 5

Entry to Step 5 indicates that the state-transitions, as

represented by the current A, are s_xfficiently constrained as to

guarantee that

Ny(T) <_ No(T ) _ m2Ny(T)

for all To Thus the current A is A*o

Solve the equation

det [ A./_- WI_ I = 0

for its largest real root Wo; calculate C = log2W o = capacity of A o

The state-transition probabilities which maximize the output

entropy at C bits per second are given by

Prob (s(t + l) = sjl s(t) = si) = Pij = _ ° _
Bi W o

in which B is the eigenvector associated with the eigenvalue W o in the

equation

[A__* - w'A- B=:Oo
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This result is from Shannon 5, and it leads easily to the construction

of a source which is optimal for the channel.

3"6"3"3" An example

This example will illustrate how the process typically proceeds

and what simplifications are often possible. Let A be an automaton

described by sets X = I Xl, x2, x3_ , S = {s l, s2, s3, s4, s 5, s6_,

Y -- L_Yl, Y2, y3_J and functions f and g given in Table Io

Next - state function Output function

f gx I x 2 x3

sI S2 S3 S5

s2 s3 s2 s3

s3 Sl s2 s3

s4 s2 s3 Sl

s5 s5 s5 s5

s6 sI s4 s4

s1

s2

s3

s4

S
5

s6

Yl

Y2

Y2

Yl

Y3

Y3

TABLE Io State and output functions of A

Preliminary. State s6 cannot be entered from any s_S, so it can be

dropped; with s6 gone, s4 cannot be entered, so it can be

dropped° State s5 cannot be abandoned once entered, so it can

be dropped; note that this means that the couple (Sl, x3) must

never be allowed to arise° With S = [ sl, s2, s3_ we can

proceed°
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0 i 1 C: I i 0 0

= o l l AI = o o A2 -- 1

1 1 1 0 0 I
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O]1

1

Step l o

Step 2°

A 2 contains columns with more than one io

TI = I Vi, V_, V3_ with Vl = V2 = [0 1 i] and V_ = I1 1 1 ]o

2a__. A A 1 =

AA 2

[ilil[°ll1I°°°]1 x 0 0 0 = 0 0 0

1 0 0 0 0 1 1

= 1 x 0 I 1 = ! 2 2

1 1 1 1 1 2 2

The rows of A A 1 and AA 2 are the vectors in QI o

Step 3. To each 2 in the matrix product there corresponds a parallel

set containing two sequences, and if the 2 is in the (i, j)

position of ___A, the sequences must start with si, pass through

an s in g-l(y_), and end with sj, since

[ ow
The parallel sets, subscripted with i and j, are as follows:

P12--{(_1's2_s2)'(Sl'S3'S2)}

P13: {(Sl'S2'%)'(Sl'S3'S3)}

P22: { (s2's2'_2)'(s2'%'s2)}

P23= {(s2's2's3)' (_2_%'s3)}

P33-- {(%'s2's3)' (_3'%'%)},



The second order transition matrix, after relabeling states

as indicated on page 73 of the text, is given in tabular

form below.

s(t + i)

8O

s(t)

s31

Sl2

s22

s32

s 13

s23

s33

s31 s12 s22 s32 Sl3 s23 s33

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 1 0 0 1 0

0 0 1 0 0 1 0

1 0 0 1 0 0 1

1 0 0 1 0 0 1

1 0 0 1 0 0 1

The elimination of a sequence from a parallel set P is accom-

plished by substituting a zero for the corresponding 1 in this

matrix. The sequence in P to be eliminated may be selected

arbitrarily, although a good choice will minimize the subsequent

computations. We choose in this Example to eliminate the

following sequences:

Sl,S3,S2; Sl,S3,S3; s2,sB,s 2

s2,s2,s3; s3,s3,s2 ; s3,s2,s 3

(this is in fact not the best choice). The result is given

below.



8i

s(t+ i)

s(t)

s31

s12

s22

s32

si3

s23

233

s31 s12 s22 s32 s13 s23 s33

0 i 0 0 i 0 0

0 0 1 0 0 i 0

0 0 I 0 0 0 0

0 0 i 0 0 0 0

i 0 0 0 0 0 0

i 0 0 0 0 0 l

! n 0 0 0 0 1

S = _ s31,s]2.,s22,s32,s13_s23_s33}o

Step 4, Observation of column s32 and row s22 indicates that s32 and

s22 can be eliminated from So Frequently the second-order

transition matrix at this point is merely an expanded version

of a first-order matrix, allowing a further simplification,

but in this Example that is not the case° Table II gives

the matrix, in tabular form, resulting from the foregoing

eliminations and also redefines the output function g on the

relabeled states°
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State

Transitions

s(t)

s3z

s12

Sl 3

s23

s33

s(t + i)

s31 s12 Sl3 s23 S33

0 i i 0 0

0 0 0 i 0

i 0 0 0 0

i 0 0 0 i

i 0 0 0 I

Output function

g

s31

s12

Sl3

s23

S3B

Y21

Y12

YI2

Y22

Y22

TABLE II. State transitions and output functions after simplification

M

S = {s31,s12,s13,s23,s33_ •

0 i i 0 O

0 0 0 i 0

i 0 0 0 0

i 0 0 0 i

i 0 0 0 i

A
12

m

0 0 0 0 0

0 0 0 i 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A

21
m

-- I

0 i i 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A

22
w

-0 0 0 0 0-

0 0 0 0 0

0 0 0 0 0

i 0 0 0 i

I 0 0 0 1



With these matrices we return tc:. Step io

Ste_ A A22 contains columns with more than one io

_°[v__ m v__ w_v_:[o__oo_
v_:[oo o _ o] _mo[_o o o o],_n_

_v_°v_:[_ooo q°

2ao

0Ol0]000 0 0 0

A A12 = o o AA21 =

i:oooo 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0 1

]0 1 1 0 0
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2b°
m

2ao
m

2b.
m

A A22 =

-0 0 0 0 0-

1 0 0 0 1

0 0 0 0 0

1 0 0 0 1

1 0 0 0 1

The rows of these matrices are the vectors in Q1 o

Q1 = _V1, V4, V6' V7_with V1 and V4 as ab°ve andwith_

_:[_ o o _ o], _vT°[o o o o o3 .

_3 _" T2 = T2 U %



Step 5. The equation det [ A -WI_] = O,

-W 1 1 0 0

0 -W 0 1 0

1 0 -W 0 0

1 0 0 -W 1

1 0 0 0 l-W

= 0

has Wo = 1.618 as its largest real solution.

C = log 1.618 = 0.693 bits/unit time.

The eigenvector B is easily calculated to be

[0.618

0.618

B = 0.382
m

1.000

1.000

The second-order state transition probabilities are given

below.

Pij

s31

s12

s(t) Sl3

s23

s33

s(t + i)

s31 s12 Sl3 s23 s33

0.000 0@618 0@382 0.000 0.000

0.000 0.000 0.000 io000 0.000

1.000 0.000 0.000 0.000 0.000

0.382 0.000 0@000 0.000 0.618

0.382 0.000 0.000 0.000 0.618
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A source to realize these transition prGbabilities can be

constructed by enabling it to follow the states cf A (returning

to the original single-subscript notation, in which the set

of states is S = {Sl, s2, s3]j ), and to emit symbols as

follows.

If preceeding state and

present state of A are

s(t- i) s(t)

Source emits xl, x2, x3
with these prcbabi!iti_s:

xI x2 x3

s_ sI

sI s2

sI s3

s2 s3

s3 s3

0o618 0°382 0o000

io000 0.000 0o000

io000 0.000 0o000

0.382 0o000 0o618

0.382 0o000 0o618

With this source, the output sequence is a Markov process

and the transition probabilities are as follows:

y(t + i)

reader o

y(t)

Yl

Yl 0 o000

Y2 0°382

Y2

io000

0°618

The entropy of the sequence is 0°693 bits/unit time°

Before leaving the subject of automata capacity, we will make

one final observation which has been deferred to avoid confusing the

This is that when A_* has been found, one need not solve the

det [ A* - WI ] =O_



for its largest real root but may solve instead the simpler equation

det _ g(A*) - WI_ ] = 0

for it___slargest real root; the two roots will be the same. In the

second equation, g(A__*) is the matrix of allowable output transitions,

and it may be deduced directly from A___*and g. For the example, this

is illustrated graphically in Figure 12. Arrows indicate allowed

transitions in A* above, and in g(A_*), below. The output transition

matrix in tabular form is:

y(t-2,t-1)

Y21

Yl2

Y22

y(t-l, t )

Y21 YI2 Y22

0 1 0

1 O 1

1 O 1

The determinantal equation det [g(A__*) - WI__= 0,

0

i =0,

I-W

-W i

i -W

i 0

has W o = 1.618 as its largest real solution, and log W o m 0.693 as

before.

The reason this simplification is possible is that when the

output sequence carries just as much information as the state sequence,

one gains nothing by maintaining the distinction between states which

map to the same output; the exact state sequence could be deduced from

the output sequence if needed° Therefore we can deal with a homo-

morphism of the automaton A*, and using g(A_*) amounts to doing Just

that.
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3.6.3.4. Further remarks

This section has provided a means of calculating, or at least

approximating, the capacity of any arbitrarily complex (but finite)

network of MWI's, mappers, and Moore automata. Since a great many

mechanisms can be approximately modeled by networks of this type, we can

now calculate the capacities of many systems° In the chapter on regu-

lation we will show that the power of a regulatory system to regulate

is limited by its channel capacity; consequently this section is of

substantial importance to the theory of regulation.

3.6.4. capacity of noisy channels

A Moore automaton is an example of a deterministic channel - a

channel for which _(_) = O. A nondeterministic channel may be viewed

as a deterministic channel with an unknown input, W, so that

-- _xHL< W,X >(Y) = 0 although (Y) > O.

m

X

m

W

Deterministic

Channel

m

. Y

If we think of _ as "message input," Y as "output," and W as "noise

input, and the channel as a relation R between the three s-variables,

this adequately characterizes the situation of the noisy channel.

HL(_) is the information rate for the output sequence. The

identity

HL(_)_= TLcx" : _) + H_(_)
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shows that the information rate at the chsm_nel output is the sum of

the rate at which information is passed from message input to output

and the rate at which the noise contributes to the output, since the

last term,

is the rate at which the noise "corrupts" the output in spite of the

message°

The last term is zero for noiseless channels° If the contri-

bution of noise is regarded as a nuisance, so that TL(_ : Y) in the

rate of "useful" information, then the channel capacity for useful

Cuseful =max{ TL(_ : 7)_

with the maximum taken over the distributions N(_X,_) compatible

with both R and the assumed characteristics of the noise source°

What one regards as message and what as noise is arbitrary;

and X play symmetric roles, and the equation

shows this clearly° If TL(w : X) = 0, ioeo, the noise is independent

of the message, then

HL(7)=TL( :7)+TL( :7>+

_(7) _ _5(g:i) + Ts(g:7)

and the output information rate is at leant the sum of the message_to-

output rate and the noise-to-output rate°

information is
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IV. INFORMATION THEORY AND COMPLEX SYSTEMS

Introduction

In this chapter we will focus attention on information theory

as it applies to complex systems@ After a brief consideration of what

is meant by complexity, we will consider several information theoretic

tools for dealing with complexity in systems and will show how these

tools can lead to a better understanding of such systems, by discarding

excess information. The basic point of the chapter is that to under-

stand a complex system, one must discard much nonessential information,

and the methods and measures of information theory throw away a great

deal while preserving that related to the structure of the system@

4.1. Complex sFstems

4.1.1. Measuring complexity

We will deal briefly in this section with some of the difficul-

ties which arise in attempts to measure the complexity of a system, and

we will propose two measures which, although not perfect, nevertheless

are consistent withmany of our intuitions° No attempt will be made to

deal with "systems" in the vague, general sense of that word, but rather

only with systems as ordered sets of s_varlab]es and as networks of

machines, probabilistic or not, embodying those variables. Moreover

we will consider only dynamic systems, in which the s-variables repre-

sent time sequences, and the focus will be on the complexity of the
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system's behavior rather than or_Lhe complexity of the system _er Seo

Complexity is a poorly®defined uotion in which the subjective

componentso predominates that it is probably impossible to produce a

definition, much less a measure, acceptable to all people in all

circumstances° Yet few would disagree that there is a strong link

between -_ _ ^_'_'*_"_vmp_ and _^_*_^_- ÷_ _ __t_ _ _._ +_

take in to "understand" the system_ (ioeo, its behavior), or to describe

it, the more complex it seems°

We speak of the complexity of a system as if it were a property

of the system, and that semantic _ge obscures the 1"act taat complexity

is really a relation between the system and its observer, as is apparent

from the fact that the same "thing" (say a watch) may appear quite

complicated to one observer (a housewife) while not nearly as complicated

to another (a jeweler). When a "thing" appears less complex to one

observer than to another, the two may actually be considering different

systems (ioeo, different variables) or, if not, one observer may under-

stand the system better - have a more adequate mental model of it, that

is, so that it appears more predictable and less mysterious°

One contention of this section is that it is to the observer's

"model" of the system, rather than to the system itself, that any measure

of complexity should be applied° By his model we mean the ordered set

of variables comprising the system, together with his best current guess

as to the internal dynamics of the system - what system-_lues are most

likely, which variables are causally linked to which others _ what

functional relations obtain, and sc on _ embodied in his _ prior_
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"probability" distribution Pi' giving for each possible past history of

the system, the "probabilities" for the ensuing system-value

= _X , _ ..o, >:

Pi= Pi(siIsi-l,si-2,ooo)o

Dealing with the observer's model rather than with the system itself

serves to remove the problem of the observer, to some extent, by making

objective his knowledge (or ignorance, or intuition) about the system°

Having made clear that we will deal hereafter with models of systems

rather than with systems themselves, we can revert to use of the word

"system" as a convenient shorthand for "model of a system," bearing

the distinction in mindo

An apparently reasonable axiom to adopt with respect to a

measure of complexity is the following:

If one system is a homomorphism of another, then the

complexity of the former should be less than the complexity of

the latter°

This appears to be well in line with our intuitions, for a homomorphism

of a system is usually thought of as a simplified (ioeo, less complex)

version@ If this axiom is accepted, then the following is a direct

consequence of it:

If two systems are isomorphic, their complexities should

be equal°

For if a pair of systems are homomorphisms of each other, they are

isomorphic, i°e., relabeled versions cf each other° We feel that

if we understand one system, we understand another isomorphic to it



(indeed, this is a common teaching device)_ and that therefore _,he two

are equally complex° The axiom is quite strong in that it states that

the two systems in Figures 13 and 14, Which are isomorphic, are equally

complex° In some sense, the system of two parts seems more complex than

the other; yet our intuitions on this point are contradictory_ for it is

comm__on!y thought that a system which can be "broken do_" into parts

is less complex than another, having the same number of states, which

cannot - at least that is a common attitude with respect to really

large systems°

The axiom rules out reduction oz_ compl,exmty through mere

relabeling of states and allows us to view every system as a one®

variable system, through relabelingo This may seem to conflict with the

observation that relabeling a system sometimes does in fact make it

appear less complex, as when one notices that a system which is under

study is isomorphic with another system which one "_derstandso" This

i

is not necessarily a weakness of the axiom, but rather further support

for our insistence on measuring complexity of one's model of the system;

for what apparently happens when the isomorphism is noticed is a

revision of the model, making the model for the one system match that

of the other°

Another axiom is the following:

If a system is composed of a number of independent parts,

the complexity of the whole system sholil,d be the sum of the

complexities of its parts°

If one is to be able to relate the complexities of the parts to that of

93
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System A

Y

X

f0 0 I

0 0 I

I I 0

fl X xY---_ X

f2

0

I

Y

0 I

I 0

I 0

f2; YxX --I,- y

XI-ix yi-I

XI x yl

P!

<0 , I>

<I ,0:>

'_I, L>

<0,0>

<0, I> <I_0 > <I,I> <0,0>

0 0 0 I

I 0 0 0

0 I 0 0

0 0 I :

, r : 'lbll;rv ' ' ":It %t r'lLutl _,r,

S;" SI-P2 (Si_ _ _.... )

Figure 13.
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System B

k__2A

f3

Z

I 2 3 4

2 3 4 I

i:3 - "Z..-.>z

Z;

P_£

I

2

3

4

Zi-I

I 2 3 4

0 0 0 I

I 0 0 0

0 I 0 0

0 0 I 0

Figure 14.



%

the whole, this would seem to be the most natural relation at least

when the parts are independent° Yet it is open to the objection that if

the parts are "similar" or even isomorphic, even though independent,

then the whole is in some sense not much more complex than one of its

parts. To counter that objection would require bringing in some notion

of similarity or else scrapping the axiom; we will do neither, Just

regarding the weakness which results as the unfortunate consequence of

trying to find a simple, relatively unsophisticated measure of complexity.

The entropy function is consistent with these axioms, and we

therefore propose two measures of complexity related to the distribution

Pi (si _ si-l,si-2,"')" We define static complexity CS as the uncer-

tainty as to which system-value will occur at any instant, if the past

history is not known,

C = H(S i)
S

and the d_namic complexity CD as the same uncertainty, if the past

history is known,

CD = H...,si_2,si_l (Si)o

Both CS and CD are obtained from Pi, the observer's model at

time i, and therefore they change, in general, as the observer revises

his model. If the observer starts with a model admitting of complete

ignorance, then CS and CD start at log N, where N is the number of

possible system-values Si, and the complexities decrease thereafter,

although not necessarily monotonically, presumably until the model

represents the objective system wello
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The dynamic complexity CD is zero if the model is determimistic_

this is consistent with the feeling that deterministic systems, although

they may be complex (via CS) , are not complex in their style of dynamic

progression°

These measures of complexity have much to recommemd them,

although they have apparent weakne_se_ the contention of this sectio_

is that the noticn of complexity is sufficiently vague that any measures

will be found wanting in some respects, but that CS and CD are good

measures at least for many purposes.

4.1.2o Relevance of information theor_ to the stud____f,_om_x___ystems

We will mention in this sectiori some common attributes of

complex systems and the relevance of information theoTetic methods to

their study°

Perhaps the most obvious feature of really complex systems is

that they are large - not physically, but in the number of system-

values possible; frequently there are many variables, interdependez_t

in a non-simple way, with each variable taking many values. As larger

and larger systems are considered, the point is soon reached beyond

which the human, or even the fastest computer, cannot practically cope

with the whole system in detail, and the complexity must be "reduced"

by substituting a new system, related to the original system but simpler

than it° Away of doing this which is frequently possible is to view

the original system as composed of parts, each of manageable complexity

and all related in a not-too_complexmannero _uother is to deal with
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a homomorphism, or an approximate homomorphism, of the system, thus

giving up some detail. To use information theory is yet another way,

in which most details of the system are ignored and what remains is

essentially a picture of the "activity" of the variables and of the

statistical linkages and causal connections between them@ These

linkages will be explored in later sections of this paper.

Another feature which complex systems often display is a

hierarchical structure - a structure in which the whole consists of

interrelated subsystems, and in which the subsystems are themselves

hierarchical, down to the lowest level of elementary subsystem° By

the term hierarchical we mean to include, but not necessarily imply,

the case in which each subsystem has a "boss" in the system. The

ubiquity of hierarchical structures is discussed by Simon ll. For the

view of a system as composed of parts to be a useful view, the parts

must interact with each other in a more or less global way - that is,

in a way which is not highly dependent on the internal details of the

parts. The interactions in a communications system, in which the parts

are represented by blocks and the whole as a "block diagram", is a

common example. In section 4@3 we will demonstrate that information

theory can be usefully applied to effect a conceptual breakdown of a

system into subsystems, and to measure the constraints holding between

the subsystems as well as within each subsystem°

Many complex systems can be viewed as goal-seeking; that is,

they act in an apparently purposive manner, interacting with their

environment so as to "get their way," ioeo, so as to maintain certain



essential variables within acceptable limits° If the environment

represents a real threat, so that the purposive action requires actual

action on the part of the system, then i_fo:rmation theory is relevant

in several ways. First, there are certain quantitative statements

which can be madeabout the coordination required between the environ_

merit and the ..... if _ _^_ °_em " _e _ is to _÷÷_ its goal; +_._ _]l...... _._

developed fully later, in the information theoretic analysis of

regulation. Second, if internal coordination between parts of the

system is necessary to achieve the gcal, this cocrdination is also

subject to quantitative constraints, of the samenature° Third_ the

system must usually take in information about the environment with

which it interacts, if it is to achieve the requisite coordination, and

the rate at which this information can be taken in is governed by the

well-developed laws of information transfer through channels°

Complexsystems commonlydisplay another feature; their actions

are commonlyconditioned by their past history° This feature, which we

can refer to loosely as memory,meansthat the past has a demonstrable

effect on the present, and this effect can be studied with the tools of

information theory; coordination between variables displaced in time is

just as amenableto information theoretic techniques as coordination

between simultaneously observed variables° Most complex systems do not

have the property of ergodicity, and therefore manyspecialized theorems

of information theory do not apply; nevertheless, muchcan still be

said°

In short, information theory is useful in the study of complex

systems when one is willing to sacrifice the minute details involved

99
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and to look instead at the variables and their interrelations° The next

section will discuss two devices for doing just that. These are the

Diagram of Immediate Effects, suggested by Ashby, and an information

theory analog to it, the Diagram of Immediate Transmissions.

4.2. The Diagram of Immediate Effects and some information

theor_ analogs

Introduction

The Diagram of Immediate Effects (DIE) described by Ashby in

Introduction to C_bernetics is a useful device for displaying the

cause-effect relations between parts of a system, and in particular for

displaying independence of parts, feedback relations between parts, and

so on. The price paid for its extreme simplicity, however, includes

the following drawbacks:

(1) The DIE measures the linkage between two parts of a system

with cnly two values - either the two parts are causally

linked, or are not°

(2) To construct the DIE, one must in general either know the

mappings joining them, or else be able to force the system

into every conceivable system state°

(3) The DIE is applicable only to state-determined systems.

The coarse-grained character of the DIE means that its quantitative

information about relations between parts of a system is insufficient

for many purposes, and the requirements listed under (2) and (3) are
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impossible to meet in manyca_es of practical interest, eogo in com_iex

biological systems°

The Diagram of immediate Tra_,:smissions _D......) described in t_z_

section minimizes th_s=_...problems; it measures the ca'_e_,e_"__+_._. iir_kage

between parts to as fine a degree as desired_ a_.d i: demand,_, for its

construction only that the variables of _uu_=....._o+_,,-_ b__ _A_.v_hl___ s.a....the

system follows its natural mode of activity° I_ is applicable to both

deterministic and nondeterministic systems o

One of the chief advantages of the Transmission measures over

the Effect measures is that the former are better suited _'or networks in

whir_h there are changing patterns of ..... '.-_-- _ommLl/_l,_.lon, as in networks

displaying "learning", "adap%.ation"_ and the likeo This is because the

transmissions will in general, change d._ring the history of the network,

whereas the "effect"' meas,zres will not_ being derivatives of the system's

mapping which is assumed fixed° The eff.._t measures deal with what

communication possibilities Kre inheren+_ in t_e network, while the

transmls_lon measures deal with what actually bappens o

g_We have investigated the DIE, the _h=_,.,_and several. _ose_y

related diagrams in detail and bare reported the results elsewhere 12o

here only the major results of that _ _"-'_- .... _" '_l.,..v_.: _].ga,.].on w±il be giver.,.° ._:.ze

next part of _is section dea.l._ w_th the DL.'E,the fol_..owz_.,g deals .t_." _,

the DIT, and the last part offers _om_,_--__._.._.,_,.:._._.._.the asef_Iness ar._d

weaknesses of the diagrams°

4o2ol The Diagram oe_ Immediate Effects _," '_

Thi_ Lection defines tb _ DTE amd ,:ther related diagrams and

introduces several theorems about them° A:ithough the DIE is cf °'_ +, l_ _eres
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in its own right, it is included here primarily as an introduction to

the DIT of the next section.

The DIE is applicable to a state-determined system S = XI,X2,

-.o., in which each "part" X i represents a machine with input° We

denote by X i the set of allowed values for the variables X_, X_, ooo

comprising Xi, and we let the superscripts indicate time° The mapping

fi maps the state of the system, S, into the next state of part Xi;

fi : X1 x X 2 x o@. x XM --_X i

The mapping for the whole system is fr ; f : S _ S.

We will find it convenient to use the _in_

pr i : S --_ X i which selects the X i component from a vector, or more

generally the mapping Prsa : S -_S a which selects the ordered n-tuple

of components corresponding to variables in Sao We will also use

Prs_Sa: S --_ S-Sao For example, with S = _ X1,X2,X3 _ and S--a= _ xi,x3_

we have Pr3(<2, 3, 5>) : 5, Pr_a( <2, 3, 5 >) = <2, 5>,

pr S_S a(<2, 3, 5 _) = 3.

We say _i has an immediate effect on Xj if there is a pair of

system-values sa and sb for which PrS_xi(Sa) = PrS_xi(sb) and Pri(Sa) @

Pri(sb) , such that fj(Sa) # fj(sb)_ that is, if there are two system-

values different only in their Xi-components, which lead to different

Xj-values at the next step°

-It is convenient to use an arrow, as in X i --_ as shorthand

for the phrase "has an immediate effect upon," and a canceled arrow, as

in X--i _-_ Xj, for the contrary.
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We define the Matrix of Immediate Effects A = [aij ] M_M as

follows:

1 if X i -->Xj_

aij = 0 otherwise°

The Diagram of Immediate Effects (DIE)o is a pictorial representation of

-i^._; form° For ex_--mpI_ w4+h ;_ _ _ ] =_
_o it has an open and a _u_=_ -_' ........[ -I_ 2_ 3)

and

A i I o]i 0 1

i 0 lj
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the closed form is shown in Figure 15, and the open form_ with arrow-

heads assumed but not drawn on the right end of each line, is shown in

Figure 16o The DIE is an excellent device for displaying certain cause-

effect relations between the variables in a system, giving as it does

an easily grasped overview of what parts affect which, what feedback

relations may be present, and so Ono The open form, while not as

simple as the closed form, has certain advantages, notably that it

may be iterated to display cause-effect "chains" as illustrated in

Figure 17o The DIE displays effects between individual variables in [o

More generally, a subsystem Sa = Xal,Xa2_ooo,Xam C S has an immediate

{ -}-effecton another subsystem Sb = Xbl,Xb2,°°°,Xbn C S if there exists

a pair of system-values sc and sd for which PrS_Sa(Sc) = prS.Sa(Sd) and

PrSa(Sc) _ Prsa(sd) , such that PrSb(f (Sc)) = PrS.b(fr(sd)); ioeo, if

there are two system-values different only in their Sa-components which
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Figure 15.

Figure 16.

Figure 17.
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lead to different So val.,aeSo If #a a_:_d _b are not Q__s?ci.mt._ the .......... _._

form DIE is not usable_ but the c_em form is _ for ex.am_le_ with

Sa = _ , S_. = _ , and A_ as before_ the DIE is as sbowu in

Figure 18o

A convenient feature of the D_.T_is _hat when several "_ariabl.es

are grouped into subsystems, _he DIE for the sabsystems cam be deduced

directly I_om the DIE for the individual, variables°

Theorem IVo i

Let S a and Sb be subsystems of So

[_X i _ Sa,X j _ Sb Soto ]_i --*Xj_ °

_Pr_oof:

The direction _ is obvio_So To show =_, suppcse S'i --_ %

as evidenced by system_values sc and sd which are ider_tical except for

[some or all of] their Sq-components a_:;dwhich, are mapped by fj into

differen %-vai e , some% %° if andsd differ one

component, the theorem is automatically satisfied° Suppose sc a[:d sd

differ in exactly two componen+,s, those for X'al and Xi2o Ther:.

fj(Sc) = fjfx ooo x 1, _ al _ Xa2_ ) =

_ _ X _ ) = @X 1fj(sd) = _j(Xal' a2' °°° x2

where the dots indicate that the re_aining components of s e and s d are

identical° The theorem states that either _a! --_ Xj or Xa2 --_ X j

(or both); we will assume X'al _-_ Xj and X%2 Wi_ % and obtain a

contradiction°

Consider se:

: < x _ x aSe al' 2' °°° > °
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Figure 18.

Figure 19@

Figure 20.



10+7

Since fj(sc) = x I and _:qal _-> Xj, fj(Se) = Xl because so _.d _e differ

only in their Xl+componento A_d s:i.::_ce fj_Se) = x I a:._d _+a2 _-_X3 _'

fj(sd) = x I because se _nd sd differ, only in their _=componento But

fj(sd) = Xl° _"_necontradiction implies that either X--al _-_ X__ or

(or both)Xa2 --> Xj °

I/_._e+"+-+,-,'_-, ";+', +,,,.',, _+ +_ _ _ a++-'_ sd _ Pf,_ _r,, %_o +omnoneDts

only+ The obvious extension of the foregoing, when sc and sd differ in

arbitrarily many components, shows _b.at at least oae variable in
a

must have an immediate effect on X,
3 °

It follows from Theorem iV°! :that if some variables are grou_ed_

i°eo, considered as components of a new, compound variable_ the DIE

for the new system can be deduced directly from the DIE for _he old

system° For example, if the DIE for S_l = {%' %, is as shown

in Figure 19, and if X1 and X 3 are grouped to form X 4 = < XI, X3> ,

=
The immediate-effect set of Xi, denoted +kXi) _ is defined by

In the DIE, it is the set to which Xi sends arrows+ The immediate-

effect_etofSq_,de_otedA(_a)_is

It follows from theorem IV°l that

A(Sa) = XA g S--a A_X i)o

If Sa and Sb are disjoint sets whose _ion is _ they are independent

+a _t_ _b Sb -_ +;+ + '"+ " `+`+` ":'" Sa .... _ ""b+ )'"+ _Dif and only mf _t.+_d ca, P i+-+, ..,.+,.++,+,._+,..,a++............. ,++ .... +
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xl=_ha_ea_a_e_e_e_toox3e_en_ _ +_%,_ort_e
effect may be passed through a third variable or even a whole chain, as

if% --_Xk, _k --_ Xl, X1 --_ %, °.., % --_X-j. For this reason it

is useful to define the k-effect of Xq on Xj; Xq has a k-effect on Xj_

symbolized % _ _j, if there is a pair of system-values sa and sb

for which PrS_Xi(Sa) = PrS_Xi(Sb) and Pri(Sa) ¢ Pri(sb), such that

fj¢-l(sa) _ fjfkr-l(sb) , where _-l_ stands for k-1 interations of the

system's mapping. Thus _i _ _j if variations in % by themselves

can sometimes induce variations in X j, k steps later° The Matrix of

= is defined by
k-effects A__k [aiJk] M, M

0 otherwise o

The Diagram of k-effects, DKE, is a pictorial representation of A k.

Definitions for the k-effect of S--a on Sb, _a _ gb, Ak(_i)'

and Ak(_a) will be omitted since they are strictly analogous to the

earlier definitions°

Theorem IVol holds if _'k-effect" is everywhere substituted

for "immediate effect," and as before,

The oe_,at__ maps all positive real numbers to 1 and all

other real numbers to zero° Operating on a matrix, it creates a matrix

of zeroes and ones°

The fundamental relaticn between immediate effects and k-effects

follows°
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Theorem IVo2

. _'_ _ ofThat is, if X i .=_k _j then there mus+_ be a .u_aln exactly k

arrows in the tie leading from Xi to Xjo

Proof:

For k = I, t_le theorem holds° Let k = 2, and sub,.pose _i._Xj

as evidenced by a pair of system-v_.lues sa and sb _'atis:f_ying the require_

mentso If f_(Sa) = sI and. f_(sb) = s2 are identical, then fjf (Sa) =

fjfv(sb) and % _ %, contrary to our supposition; therefore _i + s2°

The components of sI and s z which differ correspond to a set of

variables S_ C A(__i) ;

Now sI and s2 differ only in their Sco,.componer.ts , and fj_,Sl/ @ fj( 2/"

thus --_ o By theorem IVo! there is an X i in S',c such that --_ _j,

and therefore there is an X_ such that % --_ X._ and X_ --_ XLo This

proves the theorem for k = 2o

Suppose the theorem is true for k = n ._-l, so that there is a

chain of n - i arrows from X_i to each variable in An_,l(%)o If

_ _j, there exist system._values sa and sb differeing only in

their Xi-components and such that fj_(l_(sa) _ fjf_-l(s.b)o This can

only be the case if %-l(sa) 4 I_ _Sb2 _ the components which differ

define a set Sd as before:

As before, Sd muse have an immediate effe2t on Xjo Therefcre, there
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must be an _in Sd such that the DIE has a chain of n - i arrows from

XA to _ and also an arrow from X_ to X--j.

By induction, then, the theorem is true for any k I> 1.

Q° Eo Do

Theorem IV.2 has an obvious corollary.

Corollar[ IV. 1

Ak(X i)c Ak(_i) = A(... A(A(A(_ i))) ...)

That is, the k-effect set of X-i is included in the set of variables

reached from Xi on the DIE by following all the chains of k arrows°

In fact, if (nl, n2, ooo, nm) is any partition of k,

/_(Ak) _ (All.A_n2. oo..A nm)

and

A_(Xi) c Anl(An2 ( •.. (Anm(xi)) ooo)) o

This fact leads to a simple procedure for estimating high-order A k

matrices from lower-order ones. The procedure has been reported else-

where 12 .

The next section will develop the Diagram of Immediate Trans-

missions, which is strictly analogous to the DIE, and will compare the

two Diagrams as the development proceeds.

4.2.2. The Diagram of Immediate Transmissions (DIT)

The DIT is applicable to a system S = , , °°. ,

deterministic or not, in which each variable X--i represents a "part."

We will use the same notation in this _ection as in the preceding, as

far as possible.
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The DIE cont-{ins iafcrm_.iom about __o..__.y=.... _em_s_• mapping ai.::.d

showswhich parts, acting _,!one, can;affect w_1.h ...... T:_e D!T

contains information abc.ut t1_e _ystem_s belt.avior, as recorded in a

frequency table; since the behavior may depend c.n changing ezternai

factors or, as _n the case of a iea_,_r,_ og or adaptlr_g _yst_m, on _me,

sense it is a more dynamic characterizat.lon of the system than the DIE.

^÷_-_+ which others_ and it showsIt shows which parts, acting alone, =.,_,

the magnitude of the effect on a continuous scale, so tha.t cne c_m see

which effects are strong and whic_n _:re weak. T_ese advantages cf the

DIT over the DIE are obtaiz_ed, however, at _he price of <_e_.. mn comp].i®

cations which do not arise in the DIEo These will be pcinted out as

they arise in this< section°

The immediate effect of Xi on is naturally a....o ...._t.ed with

what happens to Xj when X i varies and all the other _._arts dc nct; _h:is

is the basis of the DIE s.nd of the D._T as we=lo But .h_e the DiE

gives the answer to the simple query, Does Xj _ver vary, or not.?, the

DIT gives the answer to, How much cf the variation in Xj can be attributed

to %? In other words, how much of the variation in k_ is due to Xi

alone, on the average? We denote the measure of thi_ qua_tity by

- %tij _ call it the immediate transmission from Xi to , and define i_ by

tij : TS_xi(X i : X_)o

The prime is used to indicate that we are interested in the transmission

between X i at one moment and Xj at _he fo,l.!owing moment, i°eo_ as

shorthand for
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tij= _ Rob(_)•Ts_x_(x£:x]+l)°

Put operationally, t.. is the result of the following observations and
ij

o_o_at_o_so__o(_,x-_,.o.,_o _ o_sor_at_o_o_o_a_os
one or more protocols which list the successive system-values taken by

during a finite time span° Some particular set of values for all

variables except _. is chosen; that is, an element in the set PrS_xi(S)

is selected, and the protocol is scanned for system-values matching

that element (in all but Xi, of course)° Whenever one is found, the

value of X i and the subsequent value of Xj are recorded, and eventually

a frequency table for (Xi,X_) is thus constructed. The transmission in

that table is a measure of the effect of X i on Xj when the other variables

are constant at the selected value° The process is repeated for all

the other elements in PrS_xi(S), and a weighted average of all the

resulting transmissions gives tij o Thus tij is a measure of the effect

m,

X--i has on Xj when the effect of all other parts on Xj is blocked.

As an example, we will calculate tl3 from this short protocol

time I 2 3 4 5 6 7 8 9

X 1 i 3 2 I 3 2 2 2 I

X2 3 1 3 i i 3 3 I 1

X3 2 1 2 i i 2 2 2 i
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Below are the frequer_cy tables fcr the < Y2, X3 > _c_ples w_ich ccc_ir

once or more.

<X2, 7-3_" = <i., i> <3_ 2> <i, 2>

I

X i 2

3

I 2

I 0

0 0

0 2

X i I 0

9 0

Frequency tables for other < X_ IK_> combinations comtain only zeroes

and hence have zero transmissicno _ _.,.h.. t,a.oies shown have transnussi.ons

of O.918 , _oo ...., a........

t13 = _ (0.918) +
J' iL
-' _"0 3_,_ _ ..... <,)o 0_0)

= 0.5 30 o

When tij > 0 we say that X i has an immediate transmission to Xj; this

will be symbolized Xi _ t _-_Xj in general or by suostituting the

numerical value for t, as by XI --_0o500 --_X 3 for the exampleo

The matrix _ = [tij ] M_M is the Matrix cf Immediate Transmissions,

and its picCorial representation is the D_ia__ram of Immediate Transmissions

DT_o The_T is just like the DIE except _hat with -._eS,_,_ arro_ or

line is associated the numerical value of the transmiss:iOno The ma:.rix

and the DIT in bctn forms are given below, for the ex_mpleo

T

0o'75 0o41 _;o50]

0o16 0o 06 0 o_6

OoO0 <io,_,,_ O oO0

The closed form is shown in Figure _"_ and the o_.en fcrm in Fig,zre _,r....
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0,75

0,50 _ 0,16

0.06

Figure 21o

__, 0,75

,

Figure 22°



The following theorem gives the mos_ f:x_damental relation

between the DIE and the DITo

Theor_

Pr,oof:
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sB differing only in their X,:_ompo-,ents, fj(Sa) = fj _'sb_o'

implies that HS_X_ (X_) = 0 and t_._ t.hat ±o. = O.1j

Suppose Xq _-_ Xj; then fcr every pair of system_values sa and

_uis

Qo Eo Yo

For a state-determined system, then_ the absense of an immediate

effect of X_i on Xj forces the correspomdxng immediate t,ran_missiou to be

zero° The presenae of an immediate effect does not, of course, imply

that the immediate transmission must be positive°

Just as in the previous section, we can generalize the definition

by allowing it to include transmissions of subsyst, em_ on cther subsystems,

and also transmissions across more than one time interval° We define

the k-transmission from _a to _b as tSaSb_k:

tSa_Sb, k = TS_,Sa(S a : S_)o

The k, like the prime used earlier, indicates a time gap of k time

units or steps° We say that Sa has a k_,transmission to S_b if

tSaSb,k > O; this is symbolized as 'S-a ---_t _ S_b_ or with the

numerical value in place of the to

Theorem IVo3 can be stren t_en_d cons,iderabiy as fol.iowsg - " _ • o



Theorem IV.4

m

Let S-a and S--b be subsystems of a state-determined system S.

Proof:

is:

Theorem IV._

Let S and S be subsystems of S. Then

_3Xi¢ Sq, Xj _ S--b s.t. Xi --* tl _k _j_ ==_ _ _a_,t2k___b_

and t2 _ tI.

t2 = tSa,Sb,k = HS_Sa(S_) - Hs(Sbk)o

By using the identity H(X, Y) = H(X) + Hx(Y) and by adding and sub-

tracting HS_xi(Xj k), we obtain

+ (Sb-X j) - HSt2 = HS_sa(Xj)Hxk,S.Sa k k (Xj)

+ H_j, S (Sk - _j)+ HS_xi(Xk)- HS_Xi (X_)o

Grouping the fifth and third, the first and last, and the second and

fourth terms,

t2 = txi,xj, k
: + Sb-X j)+ TS_Sa (Sa-X i X_) T..k _ _ (S : k kAj ,_-_a a

txi,Xj,k = tlo

Q.E.D.

I16

Then <Sa --->t kSb_ _[_a k_ _b_ "

The proof is identical in form to that for theorem IVo3 and will not be

given here.

Recall from the last section =

_3Xi_ _a, XL _ SA s.t. Xi _ Xj_ _=_ _ _a _ _b_ °

The corresponding statement for k-transmissions is only half true, that



In fact the theorem holds if subsystems Si arJ, 'Sj are s_Zbs_it_ted

throughout for Xi and Xj; this is also the case in the st_,tememt for

k,_effects °

That the converse of theorem IVo5 fails can be shownby an

example° The frequen;:y table beio_ gives tr_e I_equencies N<X _ ,

--T+! yT+l -- { .... )A , -) for a system S = X , Y o

< i,i >

1,2 >

2,1>

< 2,2_

<X'_ y'_> = S _

<i,I> <1,2> <2,1> <2,2>

l 0 0 i

0 1 1 0

0 1 1 C

1 0 1

Calculations based on these frequencies give the following values:

ts, S = i; ts, x = ts, Y = tx, S = ty_ S = tX._X = tx_ Y = tv X = ty_y = O°

From this example we see that one subsystem may have an immediate

transmission to another subsystem witho_t there beir_g any !ower-,order

transmissions at allo

The strongest statement it is possible to make regarding the

converse of theorem IVo5 is given by the fol.lowing _heoremo

Theorem IVo6

Let Sa and $6 be subsystems of a state-determined system

So Then

_a ---_ t _ Sb_ ==_ {3Xj _ S_b soto S--a -@ t _ Xj]o
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Proof:

Xj - tSa,X jSuppose that for every in Sb, ,k = 0. From the

definition of k-transmission, this implies that for every Xj in Sb,

HS (X_) = (X_)-S a 2 HSa,S-S a

The term on the right is Hs(X_), and it is zero since _ is state-

determined; therefore, HS_Sa(X_) = 0 for everyXj in Sb" The following

is an identity.

°
ThU._ _

HS-S(S_)= - %-s(s_)
a a

and since entropies and transmissions are always nonnegative,

Hs_saCS_)=o

Consequently,

tsa,Sb, k = HS_Sa(S k) - HSa,S_Sa (Sk)

=Hs_sa(S_)- _(s_)

=0 - 0

=0.

When tSa,Sb, k > O, therefore, the supposition that tSa,Xj, k = 0 for all

Xj in gb must be false.

Q.E.D.



iz9

Even in a state-_determined system_ one can:-_otit, . n - 'ge oera_ infer

from Sq--_t --_j that there is some X_i in Sa such that Xi-_ t --_i'_jo

The situation is somewhat different, then_ for the DIE and the LITo

There is a simple relation between the DI_ of a system and the DIE of a

related system formed by grouping variables into sribsystems; the

_°÷_" i" mo_ complex for t.hpI]TT.

Next_ recall theorem IVo2, which said that if X_i _ _.j_

there must be a chain of k arrows in the DIE linking X_ to X.o T_e
1 J

corresponding statement for transmissions is not true; _:Vi"_'_t _ X5

is possible when there is no chain of arrows in the DiT from X i _o Xjo

One would expect that if Xi were to have a k,otransmission to XL, this

would have to come about by Xi having an immediate transmission to the

whole system _, _ having an immediate transmission to itself, and

% -having an immediate transmission to , so that S woald be a "channel"

for the k-transmission. Surprisingly, this is not necessary; below is

a frequency table N(X_, X_+I, X_.2) for a system _ = _ X_; and

< x x +l >

X'r+2

<i,i>

1 i

2 0

<1,2> <2,1> <2,2>

I

0

0

i i

_ha_ X has mo immediate transmission tofrom this table one calculates +

itself, but that it does have a k_transmission to itself (for k = 2)

of i bit.

(The table could represent the transition frequencies for a

Markov chain, if zero in the table were replaced by _ and 1 were replaced



byl-_ ;

limit. )

tx, X could then be madearbitrarily small, and zero in the

For state-determined systems, however, _may be viewed as a

"channel" for the k-transmission.

Theorem IV.7

Let S-a and S-b be subsystems of a state-determined system

_. If Sq--> tO __b, then S--a--_ tI--> S, tl_t O, and

-, t2 -->_, t2 >_ to, and S -->t3--_ S-b, t3>_ tO•

Proof:

t O = tSa,Sb,k = HS_Sa(Sk),

Now tI = HS.Sa(S' )

Rs_s(s')+ Hs,

The last term is zero, since _ is state-determined.

tI = HS_Sa(S', Sbk)

Next,

= HS.Sa (Sk) + H_k_b'_-_a__ (S')

tI_ HS_Sa(S_) = tO •

t2 = HS_s(S' ) = H(S')

= H(s')+ Hs,(S

, Sk
= H(S , b )

= H(S_) + HS_ (S')

t2 = HS_ S (S_) + T(S-S a :
a

_HS_Sa(S_) = t O

Sb) + Hsk(S')

120

L
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Last, t3 = HS_sLSb)

-- ,

= t2 >_ tO o

Thus tl, t2, and t3 are all at I_._-÷. as large as to_

Q° Eo Do

In summary, the DIT is similar to the DIE in many ways when the

system diagrammed is state-determined, but otherwise its properties are

quite different and only weak generalizations may be made about it.

Even so, it is a useful device for displaying cause®effect relations

in a system of parts. The next section will discuss the strangths and

weaknesses of the DIE and DITo

4.2°3° Comments on the DIE and DIT

In the same way that a hammer is well suited to driving nails

while useless for tightening nuts, the DIE and DIT are tools which are

well suited to a particular class of problems and naturally poorly

suited to others° Both diagrams have arisen from the question, which

parts of this system affect which others? But the emphases in the

two cases are slightly different, for the DIE deals with which parts

affect which others (within the constraints imposed by the system's

mapping), whereas the DIT deals with which variables actually do affect

which others, and how much° Both display the answer in a pictorial way

which allows one to get a grasp of the system-as-a-whole; the DIT can
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ponding transmissions, making the representation even more vivid. When

this is done with the example on page ll4 the result is as shownin

Figure 23.

Moreover for a system whosebehavior slowly changes, a movie-

style sequence of DIT's (one for each epoch in the system's history)

could represent gross features of the changes in a similarly vivid way°

The major drawback of the DIT is its inability to adequately

represent cause-effect relations in which the "effect" is caused by

several variables acting in concert, unless these variables are explicitly

grouped as componentsof a compoundvariable represented in the diagram°

For the variables may only have an effect via their participation in the

group (as in the example on pagellT), and equally, variables which

individually have effects may have none as a group, if somecancel the

effects of others. Indeed the latter phenomenonis the essense of

regulation, and it will be discussed more fully later°

There is another disadvantage of the DIT which is important if

the diagram is based on observation of a real system; the length of the

protocol required to minimize the effects of random sampling grows

[roughly] exponentially with the number of variables° For this reason

and others, T(Xi : X_) is in someways a more practical measure of the

effect X--i has on X--jthan is TS_xi(Xi : X_); in the next section we will

explore that transmission and its useSo
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Figure 23.
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4.3. Decomposition of system constraints

Introduction

A dynamic system of M supervariables, observed over n time

intervals, provides values for Mn variables. The total constraint

over this set of variables cannot, in general, be decomposed into a

sum of constraints over proper subsets; this was shown in section 3°3°

The total constraint can, however, be decomposed into constraints

holding within subsets and between these subsets_ and various decompo-

sitions of this type will be discussed in this section°

After a general consideration of such decompositions, a method

of decomposing hierarchical systems will be proposed and illustrated°

4.$.1. Total constraint

In this section we will be considering the constraint over the

set of variables _X i I 1 _ i _ n, Xj _ S _ representing a dynamic

system of M super-variables over a duration of n consecutive time

intervals. These variables correspond to the values which might appear

in a protocol of length n:

time:

e

xM•

1

i
X 2

_o° n

l

< j

i
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We will denote the above set by _n_ with additional identifying

subscripts, when necessary, preceeding the n:

2 a_n_ Xj i __i _<n,_j_ _a

The quantity of primary importance for a dy_amic system

_ ={ XI, X2 , °°° XM_ is the total transmission in Sorer n time

intervals, T(_n) it is the grand _..... _"-_ ..... _.,11_n_ +.h@

constraint over all nM variables - M variables for each of the n time

intervals. T(_[n) is an upper bound for the magnitudes of all trans-

missions and interactions involving any or all of the variables ° The

following sections in this chapter are concerned primarily wltn different

ways of decomposing this grand transmission into additive components,

by viewing the super-system first as composed of interacting super-

variables, next as a system with memory, and last as a group of inter-

acting subsystems °

Normally, T(_[n) increases without bound as n-_ , so we will

use the superscript L as before to denote the normalizing-and-limiting

operation:

TT,(:_) _-lira l_ T(Xn)
n--_ n

when the limit exists. TL(x ) is the total transmission in the system

per unit time interval°

4.3.2 ° Two primar_ decomp.ositions.

By decomposition of T(X n) we will mean expressing it as a

sum of other transmissions° The primary Deco_sition Identitz is as

follows:

N

_(s)- [
k=l

T(Sk) + T(SI : $2 : " ° : _N)
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where S is any set of variables and is the union of the disjoint sub-

sets Sk, i _k __,N. The set _n for a _uper-system S ={XI,_2,ooo,XM]

can be displayed in the manner shownbelow, which is meant to suggest
m

a sample protocol of So

time:

Xl:

XM:

1 3 oo n

[Z2T  
There are two primary ways to "slice" this display: into M horizontal

strips representing the super-variables, and into n vertical strips

representing the system at the different times°

We denote the set representing a horizontal "slice",

_,X 2j,.°.,xjn} , by %j,no The horizontal partitioning suggests the

following version of the Decomposition Identity:

N

T(_n)-= _ T(%j,n) + T'(%i,n_2,n: °°° :%M,n )°

j=i

Consider first the terms T(%j,n), representing constraints

internal to the several super-.variab!eso When we say a dynamic system

_ constraint holding over theexhibits memory, we mean that th_.r_, is a

variables displaced in time° For memory implies a constraint, an effect

of past system-values on the present value; a system without memory is

one for which knowledge of the past and present is of no use in predicting

the future. The constraint representing memory (c_er a finite time

" _ -- in this view_ Just T(X_:X_: .:X_)span) in the su_.r.-var_ab_e Xj is., °o



127

or T_j,n)o The summation in the identity therefore represents the

memory-constraints in the M super_.variab!es (over n time intervals).

The last term represents the constraint over the set < XI, XI,

.oo, X i>, o°., < , , ooo, > o It is the ccnstraint_ that is,

binding the super ovariables tcgether (but over only a finite time span)°

This _....... _+_ w_u]_ _ _c_iate for instance, in

studying the behavior of a married couple, with the famz_y constraint

decomposed into one memory constraint for the husband, another for the

wife, and a term representing the bond between them°

Denoting, as before, the normalizing_and-iimiSin_ opezation

with a superscript L, we have

TL(_ lim i T(_ )j) = n÷_ n j,n

and N

j=l

The last term is bounded by the constraint capacity of the super-

system So

The previous decomposition was appropriate to the view of a

system as a collection of interacting parts, each with memory. The

next decomposition fits the view of a system as a number of parts

mutually constrained at each instant, with memory being attributed to

the system as a whole. Denoting, as before, the set X , X , .°., X

by Si and the set {<SI>, <$2>, °°°, <sn>} by <_n>, it is

n

T(Xn)_ E T(si) + T(<_n>)°
i=l

The terms in the summation are the instantaneous constraints

holding in each of the n time intervals, and the last term is ....
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memory constraint for the compound super-variable _ S • (note the

difference between _, a set of super-variables, and < S >, a super-

variable with components.) The term T(<_n >) might be called the

system memory constraint°

This decomposition-is appropriate for str_ctures of the form

shown, for instance, in piano music, where the restriction to "harmonious

chords" implies an instantaneous constraint while the restriction to

"melodious chord sequences" implies a system memory constraint°

and

Application of the normalizing_ando_limiting operation gives

TL(<_) = lim 1 T(<_n > _
n-_oo n

n

TL(x) = lim i=l ._ TL(<_>)o
n÷_ n

The total constraint, per step, is the s_nu of the average instantaneous

constraint and the system memory constraint (per step)°

The two primary decompositions of T( " 'nj are by no means the

only ones possibl.e_ and in the next. section we t_n to a hybrid type,

decomposition of a system into s_'S_le_ with memory° First, however,

it should be emphasized that the memory constraint for a compound

variable may be less than, equal to, or greater than the sum of the

memory constraints of the compcr,.entso Fc.r exampi.e_ if 'S_= _ X, _ }

qz T.-I >") less than [ T_n ) + T(3n)] byand y = x we can have T(_ n ,.

having X" be cyclic :

.-,i.._ q T+3 "t+4,'t+5,time: o.o, _ , • _.,'t+_, ._ ooo

I -' ' "-: i 2 o

X: ooo, i , 2 , . ,, _. , , , ..

'_' "_ 2 1 oY: °°°, 2 , 1 , :'-, _ _ , , .o
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T(%n) = T(_n ) = n-i bits

take values i and 2 equiprobably and independently:

S

time:

r"

I

ooo, T, _+i_ "_+2_ _+3, _+4, _+5, o.o

ooo, i, i , 2 , i , 2 , , o.o

ooo, , I , i , 2 , I , 2 , °°°

T(<_n >) = n bits

: ) =obitsn °

If the supervariables are independent over the n time intervals,

ioeo, if T(_l, n :%2,n = °°° :_M,n ) = O, then the system memory

constraintexactly equals the sum of the individual memory constraints:

M

:% T( oT(<_n>) = _ Tt j,n) = Zn)
j=l

This follows immediately from corollary IIIo2, which gives

n

T_l,n:OOO:%M,n ) = 0 e _ T(S _) = O,
i=l

and from the decomposition identities for T(En)o

4.3o$o Hierarchical structures

One of the most time-honored and successful approaches to the

study of complex systems has been to view them as composed of inter-

related subsystems, to study each subsystem individually, and then to

study the interrelation between them° The fact that this approach has

been so successful for so long attests to the ubiquity of systems

having structures amenable to the approach - structures in which the

subsystems can be understood more o_- less adequatcly in isolation _n_ in
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which the subsystems interact on a more or less global basis° Simon,

in his delightful paperll, deals at length with such systems and with

,!

a reason for their prevalence; he uses the word "hierarchical, as do

we, to mean not only the type of structure in which each subsystem has

,V

a "boss, as in the organization of a bu_i._es!s firm_ but to include

any 'type of structure in which the system is decomposable into inter_.

related subsystems (and perhaps the subsystems into sub-subsystems,

and so on), as exemplified by a book which is composed of chapters,

which are in turn composed cf sectior,_.s'_which are divided into para_

graphs, and so On o

Simon points out that the subsystems of most physical and

biological hierarchies can be differerAiated spatially, whereas social

hierarchies are most easily decomposed by noting "who interacts with

whomo" This difference is largely irrelevant, however, for we note that

in both cases, what allows a collectior_ of parts to be reasonably

called a subsystem is that those parts exercise a stronger effect on

one another than on outsiders_ th_:_ is', the cause.effect _.ink_ or

communication ties _re disproportionately strong w_t_hin the subsystem°

The Decomposition lid.entity is admirably suited to the decompo.-.

siticn of S into N _ubsystems Sk, ii_ k _ N:

N

][ * n." ..o : k,n)o
k=l "

The identity expresses the total ccr.Lst.rai_d,cver S as the sum of the

_._._.v_-em_. p:]_s the constraintindividual, con_rair,_,ts within the N _"__ _'* .... _

holding between the subsystems (_.: ...<_,,_idereda,_ bs,._ic units); it thus

correspond.s_ precisely to viewi<_g $ as a whole., or.:.the left, and as a
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collection of N interacting subsystems, on the right° F_thermore,

each term T(_ k,n) on the right may be decomposed by the s_.me identity

(or the earlier ones) into terms which correspond to viewing subsys±em

Sk as composed of interacting parts (or variables, etCo)o _nd so Ono

When n = i, the identity is not well suited to de_om._posi_ioa.• of

d_amic _j_÷_ms, _÷_ if one variable ___ a svstem_ has a direct effect on

another that effect will usually show up most strongly one time interval

later° On the other hand, the limiting form of the above identity,

N

k=l

while it represents the decomposition well, contains quantities difficult

to estimate on the basis of experimental ....pro_ouo_s_ uz_less those _Droto-

_!_ _ v_ry ]ongo For these reasons the identity for n = 2,

N

[ T(Zk, Z2,2: °°° :
k=l

is often the most useful°

We will next suggest a practical method for decomposing systems

assumed to be hierarchical and then illustrate it with an example.

When one is confronted with a mass of data in the form of a

protocol for a system _, decomposing _ into parts S1, _2, °°', S_N in a

"reasonable" way is a formidable undertaking, especially if little is

known about the variables° The DIT is sometime_ useful for detecting

which variables strongly affect which others, toe., fcr detecting a

natural decomposition of S, but a more generally useful measure is

T(X i : X_), the transmission between variable Xi at one mcment and some

other variable at the next° Of coL_se the best measure of the inter_



dependenceof two super-variables is TL(xi : Xj), but estimation of

that number from a protocol leads to sampling problems unless the

protocol is very long; T(Xi : X_) is more convenient statistically and

hand also implies a direction - the effect of _i p_n o

To illustrate how T(X i : X_) can be u_ed to suggest a decompo-

sition of _ into parts, we simulated on a computer a simple network of

one Markov source, one mapper, and three MWI'so We then obtained a

lO00-step protocol of the system° The first fourteen steps of the

protocol, a not atypical segment, are shown below°
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time: 0

S i

X I i

X 2 i

X3 i

x4 i

x5

i 2

i i

i 3

i 2

3 3

2 2

3 4 5 6 V

i 2 2 i i

3 3 2 2 l

2 i i I 2

3 3 3 2 2

i i i 2 2

8

2

i

2

1

2

9

2

2

2

3

1,

I0 Ii

i i

2 i

i I

2 2

2 2

12

2

I

2

i

2

13 14

2 i

2 2

2 2

3 2

2 i

o124 o013 Io 057 o131 o073

o002 o0.°.3 o002 o:il.8 o012

o138 o012 _,5.'_.i. o036 o017

o002 °405 o202 °007 o017

o000 o18_ ,,o02 o.:-i:',.0 o194

were calculated°

T(X i : X3)

XI

X2

x3

x4

x5

xg x'5

These were as follows:

X i X,_ X',3

Next, frequency tables were compiled and the transmissions T(X i : X3)



If the parts _i are represented by Q and arrows representing

transmissions are drawn in one at a time, starting with the largest

transmission T(X1 : X_), the sequenceshown in Fig,&re 24 is obtained.

The sequence suggests that S can be naturally decomposedinto

In fact _'-'- suggestion is ---'' in line --_÷_ *_ _,-+- _

DIE for the network is shown in Figure 25. Note the similarity

between the DIE and the ninth diagram of the sequence.

The mappings for the mapper and MWI's are as follows:

_WI, #i:

MWI, #2:

1,1

1,2

1,3

2,1

2,2

2,3

X 1

1 2 3

1 1 1

1 1 1

3 1 3

2 2 2

2 2 2

2 2 2 (xi)

<X4,X5>

_2

i,i

1,2

2,1

X2

i 2

i i

i i

2 2

] 2 (x:)

133



m_l, #3:

X 1

Mapper (with delay) #4:

XI,X5)

MWl, #5:

< XI,X4>

_3

1

2

3

X 3

i 2 3

3 i 3

2 2 2

2 2 3

_4

i,i

1,2

2,1

2,2

3,1

3,2

2

2

2

2

i

i

X 2

1

2

1

2

i

1

_5

i,i

1,2

2,1

2,2

3,1

3,2

x5

1

i

2

i

2

i

I

2

2

i

2

i

i

i

(xg)

(x{)
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Figure 24.

• ., and so on.
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RandomSource

Figure 25.
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Evidently a "good" decomposition c,f _, other _hings being equal_

is one for which the number of parts is _'reasonable" ; e _, -_p.r_aps approxi-

mately the square root. of the number of variables) and the interpart

constraint is small compared to the total - as small as possible, in

fact° The identity and the assccla;ted experimen%al values for the

decomposition_--SqU _ aregive_,,below.

:_(:_2) -=[r(za,2) + T(zb,2)] + :r(Z_.,2_:b,2)

5.10l = [1o957 + 2.722 ] + 0,422,

The transmission between the subsystems is or_ly about 8% of the total,

indicating that the choice of _a and SA is a reasonable one° By way of

contrast, if _ is decomposed into _c = %., X2 and S'-d = %, X4, ,

v

a decomposition which the T(X i : Xj) values imply is inappropriate, the

following values result:

T(_2) - [T(_c,2) + T(Zd,2) ] + T(_c, 2 : 2d,2)

5olOl -- [o.168 + 1.966] + 2o_7.

Here the transmission between subsystems accounts for 58_ of the total,

evidence that _c and Sd do not constitute good choices for subsystems°

To continue the analysis, Sa can be decomposed two ways - into

individual memories plus intervariable constraint,

T(za, 2) -- [T(%l,2) + T_%_..,2)] + T(%_,2:%3,2)

1.957 = [Oo124 + 0.541 ] + 1o292

or into instantaneous constraints plus system memory,

T(Za,2) - [T(SIa) + T(S2a)] + T(<_a,2 > )

1o957 = [ 0,144 + 0o144] + i°669o
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Neither decomposition is very successful; the numbers indicate a strong

intervariable constraint and a strong system memory° The sameis true

of Sb:

2.722 = [0°023 + 0°007 + 0.194] + 2.498

2.722 = [ o°2o]. + 0o201] + 2o320

The indications are that Sa and Sb are not readily decomposable by

these identities°

Analysis of Sa and _b in terms of their kinematic graphs 6

CDbears out this conclusion. The kinematic graphs of Sa, with

representing the state _ X 1 = i, X3 = j >, are given in Figure 26° The

arrows from transient states are shown dotted° Sa enters state < 3,3 •

only when the input contains a sequence of four or more consecutive l's,

and it leaves <3,3 > whenever the string of l's ends°

The kinematic graph of SA, with O representing state

< i, j, k >, is shown in Figure 27° Sb tends to follow the cycle

<1,2,1> ----> < 2,2,2>----_ <2,2,]> _ <2,i,2>---_ <1,2,2>

< J

until SA enters the rare state < 3,3 >, at which time S-b soon "resets"

to <l,l,l> and waits for Sa to change state; then Sb starts up again.

The decomposition identity suggested that Sa and _b were only

weakly interconnected, as is the case; Sa influences Sb only through the

rare state < 3_3 > _ and sb does not affect 'S'a at allo Other identities

suggested tb.at the subsystems wotLld be hard to b:reak upo If the
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reader doubts it, let him try_

This example illustrates a method which co_mld well be very

useful in. the decomposition of complex systems, particularly in situa-

tions where the experimenter has very little idea as to which variables

can be naturally grouped° It is an all-t6o-_ommon occ_m_rence in s_ienee

for an experimenter to be faced _:_th a highly complex system in which

data is easy to obtain but hard 'to "make sense of" because the experi-

menter does not know which variables are functionally "close" to which

others° Faced with the overwhelming complexity of a large system such

as a brain or an industrial society, the scientist may easily bE d_£_ated

by the data unless some sort of simplification is possible. In such a

case, the method outlined here may be a useful simplification since

it suggests a natural decomposition of hierarchical systems.

The transmission T(X i : X_) used in the method is a simple

form of what we might call information transfer° The next section

will take up in more detail the topic of information transfer.

4°4° Information transfer

Introduction

Frequently complex systems contain both sources of information

and passive components which merely react to information° In this

section we will comment on the information transfer in such systems,

after first exploring information processes in purely stochastic and

then in purely deterministic systems° The topic is important to the
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understanding of regulation in complex systems, since as we shall

indicate in the chapter on regulation, regulators often take the form of

deterministic subsystems accepting information and transforming it into

appropriate regulatory action.

4.4.1. Information in Markov processes

If the process {X l, X2, X 3, ..._ is a Markov chain in which

Xk takes values from the finite set X = { Xl, x2, ..., Xm]each variable

it is natural to define the Markov super-variable _ = < Xl, X2, X 3, .°.>

corresponding to the process° The transition probability matrix for

is _ = [Pij In,n:

We deal here with discrete, ergodic Narkov processes only.

From the definition of the Markov property,

P(Xn*I I XI, _, °'°, xn) = p(xn+I I xn) _ n _ i,

it follows that

_l X2 xn(X n+l) :Kxn(xn+l ) _ n _ i.
• ooo_

This is well known, but to the author's knowledge it is not well known

that for an ergodic process the two statements are actually equivalent.

Theorem IV.8

_X I , . X n
If the process X2, o o, , oo. is ergodic, then

the two statements below are equivalent°

(i) _n 51, p(X n+l I XI_ X2_ oo-, xn) = P( Xn+I I xn),

i.e., the process is Markoviano

(2) _n _i, HXI ' X 2 xn(X n+l) = Hxn(xn+l ).
ooo_



Proof:

That (i) implies (2) is well established elsewherel3; we will

show that (2) implies (i)o The entropy e.%uation implies the probability

equation when n = 1 for any ergodic proces_ Markovian or not° For

any n _ 2, suppose that

HXI, X2, ooo, X_ _" _ = _X_._. _o

By definition of conditional transmission_ then,

Txn(<X I, X2, .oo, Xn®l _ : Xn+l) = 0

which by corollary 111o4 implies that

p<xl_ °°', xn-l_ xn+l I xn) = P( El ooo_? xn_l I xn) P( Xn+l I xn) o

Multiplying by p(X n) gives

Thus
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p(XI_ ooo, X n+l) = p(X I, ooo_ Xn) p(X n+l _ X n)

p(XI' "°°_ xn) p(xn+I I xl_ ooo_ Xn) = P_Xl• , ooo, Xn) P CXn+l• I xn)

p(xn+lIXI_..o,xn)=p(xn+lIxn>.

Q. Eo D°

For ergodic processes, then statement (2) can be used as the

definition of the Markov property°

The entropy of and constraint within a finite segment of an

ergodic Markov chain are proportional to its length, and they obey the

following equations:

H(Xl,x2, o..,xn)= _x1(X2)+ r(xI :x2)

T(X 1 : X 2 : oo. : Xn) = nT(X 1 : X 2)

Moreover any ergodic process satisfying either of the above for all

n _ i is necessarily Markoviano Tnese a_tio_s ai-e proved _-'-_^_=

following:
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Theorem IV._
-%

then

the three statements below are all equivalent.

(1) The process is Markovian.

(2) _n > i,H(Xl,X2, ...,Xn): _HxI(X2)+ T(X1 :X2)

(3) _n >i, T(X I : X2 : ... : Xn) = (n-I)T(X I : X2).

Proof:

To show (i) _ (2): The identity

H(XI, _, ..., Xn) _ H(E l) + _i(_) + _I,x2(X3) + -.o

+ HI ' X2, .-., Xn-l(xn)

together with the Markov property imply that

H(X l, ..o, Xn) = H(X l) + Exl(X2 ) + ..o + Hxn-l(Xn )

= H(X I) + (n-l) HxI(X 2)

= _xl(x2)+ _(xI :x2)

for all n, so (1) _ (2)° To show (2) =_ (1), we assume (2) true

and show by induction on m that for all m >il, the following assertion

follows:

_HxI, o.. xk(Xk+l ) = Hxk(Xk+l ) for all k, i_< k_< ml .

The assertion is automatic for m = 1. For m = 2, we actually

have only to show that the assertion holds for k = 2. The statement

(2) above, with n = 3 and with liberal use of the property of station-

amity, yields

H(xl,x2,x3)= H(xI)+ H l(x2)+ H 2(x3).
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This, with the identity

H(X I, _, X3) =_ H(X I) + HxI(X2 ) + HXI x2(X3)

establishes that

_l,x2(X3)= _(x3).

Thus the assertion is true for m = 2.

Next, suppose it true for m - lo To show it also true for m

requires only to prove it for k = mo Statement (2) and the property of

stationarity yield

u/vl vm+l) = w(vl) + HD(1Cx2) , + _L....] (Xm) + }L.m(xm+l)o

The following is an identity:

H(X I, oo., Xm+l) -=H(X I) + _I(X 2) + .oo + _i ooo,Xm_l(X m)

+ HXI ' o• ,Xm(Xm+l" ).

The first m terms on the right of both equations are equal, term by

term (since the assertion is true for m _ i)o Consequently,

HXI,oo .,xm( Xm+l ) = Hxm(Xm+I)o

We have just shown that if the assertion is true for m - l, it is also

true for m. Consequently, by induction it is true for all m _ 1.

Therefore, statement (2) implies that for all m _ l,

HX1 oo°,xm(Xm÷l) = Hxm(Xm+I )

which by theorem IV°8 establishes that the process is Markoviano Thus

(2) =_ (1)o

To show (2) =_ (3) is simple° We assume, for any n > l, that

(2) is true.

H(xl,x2, ooo,x_) = _ r_xl(X2)- _<xI :x2)
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Adding nH(X i) to both sides, we get

nH(Xl) - H(X l, ..°, xn)= n[H(X 2) - Hxl(X2) _- T(xl : X2)

T(xI :x2 : ..o: xn)....(n- l)T(X1 :X2)

showing that (2) _ (3). Reversing the process shows (3) _(2)o

Consequently, (i) _ (2) _=_(3).

Q. Eo D°

This theorem and the one before provide four equivalent defini-

tions for ergodic Markov processes° The quantifier "for all n >i"

is essential, since non-Markovian processes can satisfy the criteria

for all n up to a finite No. For example, if one writes down in order

the binary equivalents of the series _0,i,2,...,15,0,i, oo.],

{ 0000 0001 0010 .... iiii 0000 .... _ ,

the resulting chain of O's and l's, which is certainly not Markovian,

satisfies all the criteria for n _ 4. In Tact one cannot conclude from

any test based on observations of finite length that a process is

Markovian, for one could never eliminate the possibility that the

process was cyclic and only part of a cycle had been observed°

From the preceeding theorem it follows immediately that if

is a Markov supervariable (and ergodic, the only case we have

considered), then

and the per-step memory constraint is

TL(%)= T(xi:x2).

If <S> = < %' °''' XM • is a Markov super-variable with

components, the components need not themselves be Markov super-variables.



147

Obviously they may be, for instance if the components are independent,

but the following transition matrix shows that they need not be o

< XIk, Xk >

i,i

1,2

yk+l yk+l > 2,1
< _i '_2

2,2

Sample protocol:

time:

%.

i,I 1,2 2,1 2,2

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

i 2 3 4 5 6 7 8

1 1 2 2 11 1 ! 2 2

1 2 1 2 11 211 2

m

Here <S> and X2 are Markovism but X I is not.

Whenever one or more components are not Markovian, however,

there must be a constraint between the components if the whole is to be

Markovian.

Theorem IV.lO

Let _ = I_l, X"2, °_°, _M} and let <S > be Markoviano

01
Proof:

Suppose T(_) = O. By corollary 111.2, T(S i) = 0 for all i and

consequently the system memory constraint is the sum of the individual

memory constraints:
M

T(<SI>: <$2> : o.o : <sn>) = _ T(X 1 : _j : ooo : X_).
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If <S > is Markov,
M

j=l

Therefore

n (n - i) T(X_ : X_)] = O.

For every J, the quantity in brackets is nonegativeo To see this, we

expand both parts by identities, and use the stationary property

freely:

T(x_.J: ...:x_)j- (n- _)H(X_)- [ Hx_(X2)+ HX_,x2(X3)

+ ... + Hxl,x2 ,°oo,xn-1 (xn) ]

I)T(X I : X2) ----(n - I)H(X I) - u[HxI(X2) + Hx2(X3)(n

+ o.o + Hxn_I(X n)]

By subtracting the second identity from the first, we obtain on the

right a sum of transmissions, for

-Hxl,x2,ooo,xk(xk+1)+ Hxk(Xk+1)= _xk<<Xl, ...,xk-i_: xk+l)

A sum of nonnegative quantities is zero only if each term is zero;

consequently for every j _ M,

T(X : Xj : ooo : X = (n - I)T(X : X

and each Xj is Markovian, by theorem IVo9o

Q.E.D.



4 o4_2° Information in state_determlned szstems

The sequence of states in a state-determined system 6 with

section 4.3,

state):

_(x n) = R(sl)

The uncertainty in a sequence of length n is precisely the uncertainty

as to the initial state of the sequence° The per l,step entropy of the

sequence (in the limit) is consequently zero, which is to say that the

sequence carries no information (except information about the initial

HL( _£ ) = lim _ = Oo
n÷_ n

m

The components Xj carry no information either, in the limit°

In fact any deterministic sequence has a per-step entropy of zero°

Any state-determined system (with a finite number of states)

will eventually fall into a cycle of behavior 6, and the components,

<s i • = <x_, X_, .oo, >,

{ <sl', <s2>, ooo,<si-, °.°_,

represents a special case of a Markov process, in which all the condi-

tional probabilities are either 0 or lo The system's mapping, f, maps

the set of states into itself; given the present state s_ in S, the

probability that the next state will be f (sT ) is io This of course

means that H•sit (<S i+l>) = 0 for all i and consequently that

H(<S I>, < S2 >, .oo, <S n >) = H(<S I>)o

"O + +We assume the system to have a finite number of states, _ _hav

H(< S1 •) is finite. The < and > marks are actually redundant in H

and T expressions and will be omitted henceforth. In the notation of
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if the state is compound,must then fall into cycles alsoo The behavior

of each component is then deterministic and predictable without reference

to any other component, so that when < S • is state-determined and

finite,

HL( Z ) =0,

HL(_j) = 0 for all j _< M,

TL(%I:%2:"'":%M)=0.

Although the observation is somewhat frivolous and not very

meaningful, it could be pointed out that since T (_i: %2: °°°:/M ) 0

always, any part of a state-determined system, when viewed as a channel

between two other parts, has a channel capacity of zero. The Markov

super-variable < S> suggested by the state-sequence is not necessarily

ergodic nor even stationary; in fact the sequence of entropies H(SI),

H(S2), ..., H(S i), .o. is monotonically decreasing, since

H(S i, si+l)__ H(S i) + Hsi(Si+I )

H(S i Si+l) --=H(S i+l) + H [Si_
si+i_'

and consequently

i (si+lH(S i) - H(S i+l) =_ ....si+l(S ) - Hsi )

= Hsi+I(Si ) _ O.

Since the H(S i) are monotonical!y decreasing, so are the

T(S i : Si+l) for

T(S i : Si+l) = H_o_"_i+!) _ HS i,_3i+i)

: H(si+l)o
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sequence < Si> is the strongest mathematicallyThe constraint in the

possible:

T(sl:s2•ooo:sn)_ 2i=lHrSi)_[H(Si)+HSi(S2,S3,ooo,sn_

n

= _ H(S i )o

i=2

The interactions Q(S i+l, S i+2 oo Si+no , ) take a particularly

simple form and are also monotonically decreasing in magnitude:

Q(S i+l, Si+2, .oo, Si+n) : (®l) n H(si+n)o

To establish this, we let i = 0 for convenience and use induction on no

For n = 3

Q(S l, S2, S3) m _SI(S2_ : S3) _ T(S2:_ S3)

HSI(_, HSIs2,_ _.t_q_ T. t_q_= ® _ nS2\_-

In a state-determined system, the entropy of any Sn conditional on Sk,

with k < n, is zero; given the state at any time k, one can calculate

with no uncertainty what the state will be at any later time° There-

fore all the subscripted terms above are zero and

Q(S I, S2, S3) =-H(S3)o

S2 . Sn) = (-I)nH(S n) or, more convenientlyNow we suppose that Q(S I, , oo ,

for our purposes, that Q(S 2, S3, .o°, Sn+l) = (-l)nH(Sn+l), a mere

relabelingo From the iterative definition of Q,

Q(sI, s2, ..o,sn+l) =Qsl(S2, ooo,sn+l) Q_s_2 n+l)

The subscripted term could be expanded into a sum of entropy terms, but

the subscript of each would contain S1 and consequently all would be

zero° By _nspection, then Q__(S 2, ooo, Sn+l) = 0 and



Q(Sl, s2, ...,sn+l) ___Q(S2, ...,sn+l)

=_[(-1)nH(Sn+l)]

= (_i) n+l H(sn+l).

Therefore, by induction we conclude that for all n _ 3,

Q(sl, .o.,sn) _-(_l)n H(S_)o

Q. Eo D.

X'l -If _ S_ = < , X2, ..., XM > is a state-determined Markov

super-variable with components, the components need not themselves be

The example in the last section, with protocol asstate-determinedo

follows,

time:

m

S

1 2 3 4 5 6 7 8

i i 2 2 i I 2 2

1 2 1 2 I 2 i 2

illustrates this; < S > and XZ are state-determined but Xl is not.

In an analogy to theorem IVolO, however, we can prove that if

< S--_is state-determined while some component X is not, then there

must be a constraint between the components which "accounts" for the

fact.

Theorem IV. ii

Let S = {XI' X--2' "°°' %_ and let <S >be state-

determined° Then

{T(_) = 0_ _ i_Xj _ S, X_I is state-determined_

Proof:

If <S----_is state determined, then Hsi(si+l) = 0 for all i _io
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Consequently for all i _ i,

H(S i+l) - T(S i : Si+i) = 0.
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It was shownearlier that when_/_T_= 0, the.. system memoryconstraint

equals the sumof the memoryconstraints for the individual variables°

Thus for all i _ i,
M

H(Si+l)
j=l

xi.+I) = OoT(X : J

It ..wasalso shown, in corollary 111o2, that T(S') = 0 implies T(S i) = 0

for all i _ io This in turn implies that

M

H(S i+l) = _ HCY_+I)o
j=l

Therefore we conclude that for all i _ l,

M

z '1
- : Xj )..j =0

j=l

M

H i (xi+l)
j_=l Xj

=0o

This sum of non-negative quantities is zero if and only if for every

j _ M, and for all i _ i,

o,
that is, if and only if each X_ is state®determinedo

d

Qo Eo Do

Having considered Markov processes and state®determined systems,

we turn in the following section to systems which are part random and

part deterministic: systems involving both Markov sources and finite

state machines°

4°4.3° Information transfer through finite-state machines

Any arbitrarily complex network involving finite-state machines

(machines-with-input, mappers, and automata) and Markov sources may
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be viewed as a single Moore automaton driven by a single _rkov source,

both the state of the source and the state of the automaton having,

in general, several components (see Figure 28)° Although it is not

always advantageous to view a network this way, the fact that it is

possible makesit evident that we should understand the information

transfer in this paradigm case before attempting more complex cases°

The understanding of this simple case is also essential to the under-

standing of later sections on regulation°

The fundamental information quantity associated with any

finite-state machine is its channel capacity° The capacity of a

mapper is log M, where M is the number of distinct values in the range

of the mapping. The channel capacity of a MWI is log Wo, with Wo as

defined by Shannon5o And section 3.6 of this report has provided a

way to calculate the channel capacity of an automaton° That section

also provided a procedure for constructing a source which maximizes

TL(x : _), and therefore also HL(_), at the capacity°

It is interesting and useful to note that if the output (i°eo,

state) sequence of a machine-with-input has the highest possible

limit-entropy (or just "entropy", for this discussion), then the

sequence is a Markov chain° Thus if the output is not Markov, one

may be sure that the MWI is not operating at capacityo In the case

of an information-preserving _ (a MWI for which one can deduce, by

observing any allowable output sequence, exactly which input sequence

caused it) this is almost obvious, since the input must be zero-order

Markov to realize capacity in that case° That the output must be

Markov in the more general case follows from the fact that if a
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M_]r kov ISource f

Figure 28o
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distribution P(ZN I zl, Z2 ZN-l) is to maximize the output entropy, oao,

it must make all allowable state sequences of length N (as N goes to

infinity) equally likely; that fact actually specifies the distribution,

which Shannon has shc wn is Markov5o From this point of view, a MWI

operating at capacity is a device for transforming an input which is

not Markovian (in general) into an output which i__So

We will consider now the problem of finding how much information

the output sequence carries when driven by a Markov source of known

characteristics. We assume that we are given a state-transition matrix

P = [PiJ_ for a Markov source_ and mappings fo and go for the

MWI and mapper;

fo:

go:

XxW o -_ Wo

Wo --> y.

The situation is represented in Figure 29°

If the input to a MWI is Markov, the state-transition sequence

is only Markov under exceptional conditions, and information is

usually lost in the MWI (that is, one cannot usually deduce what the

input sequence was from the state sequence alone)° Our job of finding

the output entropy is considerably simplified if we break the MWI into

two parts - a new MWI which does not lose information, and a mapper

which does, as suggested in Figure 30° The new MWI is constructed so

that for every zj in Z, f maps X x zj one-to_one onto Z, and gl is

constructed so that the sequence W o is tne same as with the original

MWI. This amounts to the introduction of extra states in the MWI, so

as to make Z a noiseless coding of X, and the subsequent elimination of

the extra states by an information-losingmappingo For example, if
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fo is given as

X

158

fo

1

2

3

W o

l 2 3 4

i 2 4 3

3 2 4 2

2 l 4_ i

with the multiple entries (which make fo information-losing) underlined,

we could construct f and gl as follows:

f

1

2

3

X

W
0

i 2 3 4 5 6 7

i 2 4 3 2 3 3

3 5 6 2 5 2 2

2 1 7 1 1 1 1 w_

gl

W o

i 2 3 4 5 6 7

i 2 3 4 2 4 4

Z

When this done, Z is a second-order Markov process,

p(zi+l I Z 1, o.°, Z i-l, Z i) = p(Z i+l I Z i-1 Z i) _ i _ 2,

since given Z i-1 and Z i, one can deduce X i-l, and the further uncer-

tainty about Z i+l is exactly the further uncertainty about Xi. To find

the output entropy, then, we need only to consider how mapping a
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second-order Markov process by an information,_losing mapping, (gogl),

changes the entropy° By a change of variables,

Ui = < Z i-l, Z i

V i = <yi-i yi >

the problem is simplified still further, since if Z is second-order

m F . _ ]

Markov, U is Lflrst-oraerj _rkOVo

Thus by successive steps we can reduce the original problem to

the problem of finding the output entropy which results when a Markov

input sequence X is mapped by a convergent mapping _ into a non-

Markov output sequence Yo

Markov _ X _
\output )

The exact solution to this problem is not known, but for ergodic

chains an approximate answer can be obtained from the inequalities

yn(Yn+l) _ HL(_) _ Hyl y2 ,_i, y2 ...... Yn(Yn+l)

in which the outside quantities converge monotonically to HL(_) as n

goes to infinityl_o

The fact that a finite-state machine with Markov input usually

has a non-Markov output does not in any way imply that information is

necessarily losto Indeed, it is possible to have an arbitrarily long

chain of finite-state machines, for example MWI's (see Figure 31),

and as long as all of them are information-preserving, HL{_n) will

equal _(X) even though % _ii be (n + l)-order Markov in general°

An information,-preserving MWl can be viewed as a coding device which
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encodes the input sequence irate an output sequence in such a way that

the span of intersymbol constraints is lengthened°

In fact, most finite-state machines have a tendency to increase

the span of intersymbol constraints as they _'transform'_ a sequence

from input to output° By this is meant that if one must take n

sequential symbols into acco-_nt to get a _......._._.__.__1_l_r gcod ..........._pp_6Yimat.iom

for the input entropy,

Hxi+I xi+n ®i (Xi+n )

i
<_ << 1
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then one must usually take more than n symbols into account to get an

equally good approximation for output, entropy° Finite-state machines

tend to "spread out" the information, to put it loosely b_it pictu-

resquelyo This is, of course, only a tendency and not a law, the

notable exception being when the input is matched to a MWI so as to

realize the channel capacity; in that case quite the opposite takes

place, for the output ends up Markov althcugh the input seldom iSo

In the light of Birch's results 14, and in view of the fact

that when a Markov sequence is mapped by a convergent mapping the result

is almost never a Markov sequence, it is rather surprising that a

mapper may sometimes reduce the span of intersymbol constraints just as

a MWI can° The example of section 3°6 shows this clearly; there the

MWI part of the automaton transformed a non,-Markov input sequence into

a second-order Markov state sequence, and the mapper transformed that

further into a [first-order] Markov output sequence°
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The fact that the span of intersymbol constraints tends to

increase as a message is passed through one or more finite-state

machines greatly complicates the analysis of information transfer in

complex networks of such machines, unless the network is viewed as a

single automaton° One might think that the situation would become

completely unmanageable in networks with feedback, for example the

classic configuration shown in Figure 32. In this network, the input

sequence is combined, by way of the mappings, with various vestiges of

its own past; one would expect that the span of intersymbol constraints

in the output sequence would be immense° In fact, however, if the MWI

denoted by f2 is operating at its own capacity (or close to it), the

output sequence is Markov (or nearly SO)o We shall have more to say on

this topic in later sections on regulation, and here it will suffice to

point out that when an input sequence is "processed" by a network of

finite state machines, what results need not necessarily have a larger

span of constraints than the input°

We can deduce several inequalities relating the input, state,

and output entropies for an automaton (see Figure 33)_

The inequalities all derive from various decompositions of

H( E n ); for one,

H(_ n)_ H(xl,x2 xn zl'z2 y1 _ ,_), o.o, , , ooo, zn_ , ..°

_(xl, o..,xn)+ _xI xn(ZI, °..,Zn)

+ (yl o o yn)
HXI, .°o, X n, ZI, o.o, Zn , o , o
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Input )
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If X I .. X n ZI, . , and are known, there is no uncertainty about

Z 1 Zn . Z1 Zn, ..., And if , ..., are known there is no uncertainty

about y1 yn Consequently
, o..,

H(Z n) --H(XI, ...,Xn) + Hxi xn(Zl).
, o°o,

Another expansion of H( _ n) is

H( E ) = H(Z I, ..°, Zn) + Hzl zn(X I, ..., Xn)
n , ...,

+ _z1

The last term is zero as stated before.

for H( Z n) together, we obtain

H(Z I, ..., Zn) = H(X I, ..., Xn) + HXI,...,X n(zl)

- Hzl (x1 ).,..o,Z n ' ... Xn

, ..., zn, xl, ..., xn(Y1, ..., rn).

Putting the two expansions
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The negative term is the uncertainty about the input sequence which

remains after one observes the state sequence. Dropping it gives

H(Z I, ..., Zn) _< H(X I, ..., Xn) + Hi xn(zl)

or, a less strict inequality,

H(Z l, ..., Z n) _ H(X 1, ..°, Xn) + H(zl).

Of course since H(Z 1, .o., Z n, y1 o.., yn) = H(Z 1, ..., zn),

ZI Zn, yl yn) X I X n) + H(ZI).H( , ..., , .°o, _< H( , ...,

In the limit, as n _ oo ,

HL(x) W HL(<z,Y >)= HL(z) >I HL(_),

The entropy of a sequence, as it is transformed to state-sequence and

output-sequence, can only fall; if one is more uncertain as to the

output than the input (for a finite sequence) this surplus uncertainty

is only due to uncertainty about, the initial state of the network,
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and this finite uncertainty is relatively unimportant in the limit° In

other words, finite state machines cannot generate information_ they

can only transform it or lose it o

Generalizing from the automaton to a network of interco_r,ected

finite state machines, this has the folicwing co_:_sequences:

Theorem IV ol2

Let S--x= _l_ _2, °°°, %} be a set of supervariables

which are inputs to a network of finite state machines_ and let

the state and output supervariables for the machines in _hat

network constitute the set Sv = , , ooo, Vn o Then for

any n _ l,

(a) H Sv, oo._ S =H(S , ooo_ Sx +Hs _ ooo._S _Sv)

_ HsI ,ol Sn)o
v ' °°'_ --V

(b) H(Svl, ..., sn) <_H(Sx_, .°°9 Sx_) + H(S_)o

(c) ?(_v) _-_(_x)-

The proof is a trivial extension of the foregoing argument° The

theorem has some immediate consequenceso For one, if Sj is any subset

_n_ n_ and ,,, _,jj _ HLof Sv, then H(S , ooo, _j_ _ H(S , ooo, Sv_ , so

the entropy of any subset of the machine's supervariables is bounded

by the same quantities as the whole o __T_isin turn implies that the

limit-transmission between any k disjoint subsets of Sv satisfies the

inequality

_'(s'vl : s-_ : ooo: S'vk) -_ (k-l) _(S'x)o

Limit-interactions are also bounded; all n_th order interactions (those
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with N variables in the argument) are bounded by L 2N-2HL(_x)" There

are, of course, analogous limits for the non-limit quantities.

Through the preceeding inequalities, the incoming entropy limits

all information quantities relevant to the study of the network° We

have in the theorem another verification that in a network of state-

determined machines, with no information sources pumping in entropy,

all limit-entropies, limit-transmissions, and limit-interactions are

zero.

Notice that the theorem covers the nonergodic case (in state-

ments (a) and (b)) as well as the ergodico

The transmission between two complementary parts (whose union

is _v) is bounded by HL(_in)° This fact will be important later when

we consider networks decomposable into a regulator and a regulated

part; the transmission between these parts is a crucial quantity@

An application of the cut set theorem of Elias et al lO leads

to a possibly smaller upper bound for the entropy of any subset Sk of

SL. Suppose that a 1_etwork of finite state m_chines and information

sources (not necessarily Markov) is specified by giving all the mappings,

all the interconnection_ between the parts, and the entropies of all

sources° The channel capacities of all the finite state machines can be

found, and a graph of the type shown in Figure 34 can be drawn@ The

graph is essentially a diagram of immediate effects, with the addition

of the sources X_ and arrows showing which of the Vj in _v they affect.

Each lime leaving a Vj is labeled with the c_an__l capacity of the

associated machine, and each line leaving an X i is labeled with the

source entropy° We assume for the time being that the graph is connected°
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Figure 34.
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A cut set on this graph is a set of arrows such that if all

arrows were deleted, the graph would fall into two or more unconnected

parts. A simple cut set is a cut set such that if any arrow is removed,

what remains is not a cut set° For example, the cut shown by a dotted

line on Figure 34 prescribes the simple cut set A:

A = _i->4, 4 --_ 3, 5 -->2, 3-->5, 3 --_6_o

With each set Sk c Sv there is associated a family of simple

cut sets separating Sx from Sk; the value of each simple cut set in

the Sk family is the sum of the numbers on arrows crossing the cut

in the direction of Sko If Sk = the set A above is in the

S-k family, and its value is 4 + 2 + 2 = 8.

By slightly reinterpreting the cut set theorem, we conclude

that the channel capacity from S--x to _k cannot exceed the minimum

value among all simple cut sets in the S--k family° With S--k = _ _4' _5_

the minimum value is 5, from the cut set B:

B = _0 -_l, 2 -_ 3, 4 -_ 3, 3 -_5, 5--> 6_.

It follows that the iimito-entropy of any variable or set of

variables cannot exceed the minimum value among all simple cut sets

separating it from S-x; for the example HL(_k ) _ 5.

We assumed above that the graph was connected. If it is not

connected the same results hold; we need only redefine a cut set as a

set of arrows such that their deletion separates the graph into more

disconnected sL_graphs than originally existed, and so on. If the

original graph is not connected, and if we choose two variables in

separate parts, it is plausible to conjecture that the transmission

between them must be zero° This is indeed the case if the source
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driving the one part is independent of the so_.1_ce driving the other°

For with the prototype graph of Figule 35, we have HL(Xl_ %) = _Ix1 ),

by corollary IIIo2, this implies T[{V_ _ %)and Oo

Moreover it is reasonable to expect that if there is no chain

of arrows leading either from V'i to _Ij_ cr from Wj to V_i in a connected

then TL(_ i : %) = Oo But plausible or not_ t._lisconjecturegraph,

is false, and to see that one need only consider the graph of Figure 36,

in which V 1 and V2 are identical machines subject to the _ame input:

V1 and %' being identical, behave identically, and TL(_ I : _'2) = H(_l)O

We shall have more to say later about, this important situation, with

regard to regulation; for the moment it serves to illustrate the fact

that there may be high transmission between two parts which have no

direct effect on another via mappings or even via mediating variables o

With this background on information transfer in networks,

we turn now to the subjects of regulation and of information transfer

in regulatory networkso
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v. REG:_U_AT!O_-_

Introduction

The preceeding chapters have been c<->ncernedwith the relevance

of information theory to complex system2 in genera!_ in this chapter

we specialize to those systems in which one part is trying to regulate

another part. Section 5.1 contains general remarks on regulation_ and

shows in a qualitative way the importance of information to successful

regulation. Section 5.2 quantifies and proves more rigorously the

results of the preceeding sectlon_ and section 5°3 provides an

information analysis of three basic regulatory schemes. The paper is

concluded with some brief_ general remarks on regulation in section 5.4.

5.1. Information requirements for regulation

Up to this point, we have mentioned the topic of regulation

only in passing; we have given several results showing how the methods

of information theory are useful for the ur_derstanding of complex

systems, without specifying any particular type of system. We will

now turn attention specifically to complex systems in which regulation

is involved _ where one part of the system can be thought of as

attempting to regulate some other part. By this we will mean that

the regulator_ which we will denote for brevity by R_ and the part of

the system being regulated against_ X_ Jointly determine an outcome, Z#

_ +_o÷ +_ g_ of the rea_lator is to force the outcome (or out-
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comes_ if the process is an ongoing one) to be favorable to R_ by

some [pre-established] criterion. The regulator tries to get its own

way_ in other words_ in an outcome in which it is only one of the

determining factors. The situation is represented in Figure 37.

We will impose few constraints on this very general formulation_

leaving specialization for later. In particular we will leave open

the questions of what sort of machinery is in the boxes marked X and

R in the diagram above_ and of what factors affect X and R_ as

indicated by the entrant arrows. We will also leave open the question

of whether X is passive (as in the case of an automobile being

regulated by a human pilot) or antagonistic to R (as in a game-

playing situation in which X is trying to regulate R, Just as R is

trying to regulate X). The only constraints we will impose are as

follow s

io R_ X_ and Z are variables taking values from the sets

R = _rl, r2_ .°o_ rm_ _ X : _Xl; x2_ ..._ xn} _ and

Z = Zl_ z2_ ..._ Zp p .... y

2° The system operates cn a discrete time basis.

3. The outcome is determined by R and X through a mapping fz"

That is_

fz : X x R ---_Z.

Seen in this general formulation_ regulation is a pervasive feature

of everyday life; ranging from simple acts such as taking an aspirin

to ward off a cold to highly c_>mplex phenomena such as government

regulation of interstate commerce. With several examples we will
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next illustrate different forms regulation can take.

One basic type of regulation is essentially an attempt on R's

part to destroy X's ability to affect Z, by cutting off the effect-

path from X to Z - to destroy the channel from X to Z, as we might

put it. This type of regulation is usually a single-occurrence

phenomenon, in which R takes one action to destroy the channel and

thereafter need take no further action. The installation of stop

signs at a busy intersection to minimize the probability of accidents

there, and the deposit of a dime in a parking meter to regulate

against ticket-issuing policemen, are examples° Examples of single-

occurrence regulation in which the goal is preservation of constancy

are: (i) assuring temperature constancy of an object by dropping it

in the bottom of the ocean, (2) assuring constancy of room temperature

by installing an automatic air conditioner_ and (3) stabilizing the

political climate in a totalitarian regime by imposing a news black-

out on the press and radio. All of these examples illustrate how R

can regulate against unwanted disturbances by incapacitating the

mechanisms by which they would otherwise affect the outcome.

Regulation of quite a different type_ and a type more interesting

for this study_ takes place when R cannot block the channel from X

to Z but can only attempt to counteract the effect of X by appropriate

counteraction of its _wn. This type of regulation is usually more

dynamic than the type Just mentioned° The goal of R can take the

form of maximi2dng a probability_ as when a doctor attempts to

maximize the probability of "Patient Lives" when regulating against

diseases, or when a fencer tries to maximize the probability of
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"Avoids Being Hit" when regulating aga%uet hi_ opponent. The g©aS

can also take the form of preservation of constancy, as in (1) a

thermostat maintaining constant room temperature despite ohauging

weather_ etco; (2) the driver of an automobile maintaining a constant

speed despite hills, wlnds; and the like, and (3) in an open society,

a government countering hostile propaganda with propaganda of its own,

to preserve domestic tranquility,

The distinction drawn here between single-occurrence regulation

and dynamic regulation_ while u_eful_ is somewhat artificial and

arbitrary. For if a regulator takes a sequence of actions, the

sequence may be viewed as many actions _n an ong_ng_ dynamic process,

or on the other hand as one choice of strategy or one trajectory. The

distinction between the goals of maximizing a probability or preserving

constancy is also arbitrary; nevertheless it is useful.

About the case of single-occurrence regulation there is not

much to be said other than that if R selects one action out of a set

of possible actions, and if that action is appropriate (i.e., is

successful) while the others are not_ then R needs information to

make the selection° If a regulator selects appropriately to a degree

better than chance_ it must do so on the basis of information about

which choice is appropriate. To eelect one action from a set of N

possible actions, when all are equally attractive_ requires log

N bits of infozmmtlon.

If the selection is recurrent_ so that the concepts of informa-

tion theory become meaningful, much more can be said° We will deal
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values as steps in a continuing process. Someregulators of this type

deserve only brief mention; these are the regulators which take

several actions (or values) but do so in an autonomous, deterministic

way, such as the traffic lights which regulate traffic flow by their

repeated cycles of red and green. Wewill be concerned, on the other

hand_ with regulators which must take in information and act

appropriately on it in order to satisfy their goal criteria. Among

situations which we normally regard as involving regulation, this

situation is by far the predominant one.

Wecharacterize the regulatory situation, then, as one in

which to achieve its goal the regulator must (i) take in information

by sensing somevariables outside itself, (2) select from its

repertoire of possible actions the one which is appropriate for

attaining the goal, and (S) take that action. The process of

regulation breaks up naturally into these three components, and the

quality of regulation is governed by all three (of which we shall

have more to say quantitatively later).

Information plays an important role in all of these steps; this

is clear in the example of the fencer. To protect himself from his

opponent_ he must (i) take in visual information about his opponent's

actions_ (2) call on his knowledge and past training to select

appropriate countermoves_and (3) perform the necessary maneuvers,

which serve as input information for the opponent. Clearly the

fencer's regulatory ability is dependent on all three ; if his input

channel capacity is impaired (by dim lighting_ poor eyesight, etc.),

or if his selection is impaired (by lack of training, or drug-induced



befuddlement)_ or if his performance cf the selected ma_euvers is

impaired (by fatigue or physical weakness), he will be rio match for

an opponent not so disabled.

Similarly in the exampleof an automobile driver_ when rain or

fog cuts downthe necessary input information, or when selection is

impaired by fatigue, or whenthe capability for maneuvers is reduced

by ice on the highways, the instinctive reaction is to _low downthe

vehicle in recognition of the fact that one's ability to regulate

effectively is reduced.

The main factors opposing successful regulation, then, can be

characterized as

(1) ignorance, or lack of input channel capacity,

(2) lack of insight, or lack of "computational" channel

capacity transforming input information into

appropriate outputs,

(3) impotence, or inability to influence the outcome

successfully due to a lack of options_ i.e. lack of

output channel capacity.

In the next section wewill _nve_tigate regulation in greater

depth and attempt to quantify the qualitative assertlcn that infor-

mation is of primary importance in any analysis of regulation°

_7_
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5.2. Quantitative anal_sis of regulation

5.2.1. Regulation when the goal is to maximize a probability

We consider in this section and the next a mapping fzl : X x R-->

Z1 and a continuing process (either finite or infinite in length) in

which X and R take values at time _ and fzl determines the outcome

at time _. For example, fzl might be as follows:

R

fz I

1

2

3

X

1 2 3 4

I 2 3 i

5 1 2

3 5 1 3 (zI)

Suppose that R's goal is to force the outcome to be "i". We

can simplify the problem facing R by mapping Z I into Z by the rule:

Z = i if ZI is an outcome acceptable to R_ Z : 0 otherwise. This

gives the following mapping fz : X x R -_ Z.

fz

1

2

3

X

1 2 3 4

i 0 0 i

0 i 0 0

0 0 I 0 (z)

We will assume in this section that the distribution of X's choices

is fixed and independent of R_ that is_ we assume that N(X) or P(X)

is given. Under this assumption, what can be said about R's ability



to force a desirable outcome_ Fo_ concretene_s_ suppose X takes

its four values equiprobably; then R can force a 'l_'half the time by

perpetually taking the value R _ l_ In fact if R chooses values

independently of X_ so that T(X _ El = O, it is easy to show that

this is the best R can do. To _how thi_ we define the following_

{z -

m Q }P* =max Pi
i=l

r* : the numerically lowe_t value in the

oe, I }•
The definition of r* is a bit peculiar in order to _ing!e out only

one of the set of "best" values°

Theorem Vo 1

If fz : X x R-_Z where Z = 1 implies an outcome

favorable to R and Z : O implies an outcome not favorable,

and if P(X) is fixed and T(X : R) : O, then the expectation of

a favorable outcome cannot exceed P*.

Proof:

P :
P(xj,r i)

• xj,r i_ _ fzI (1)

P(ri) P(xj )

• xj,r i_ e fzI (i)
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P(ri) " Pi

i--i
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m

isl

Equalities are established if p(r_) = I.

Q. E. D.

The theorem says that if R is to choose values independent of

X's values, it can do no better than to perpetually choose the value

r*. Thus if P is to exceed P*, R must take values which are correlated

with those of X; i.e., there must be transmission between X and R.

Single-occurrence regulation corresponds to the choice of R_ = r*

for all _ , and if dynamic regulation is to improve on that, there

must be a channel linking X and R.

We must next construct a measure for the regulation imposed

by R. We denote the measure by/_l" The simplest measure would be

PI = (P " P*); however, this measure would not differentiate between

one regulator raising the probability of a favorable outcome from

0.8 to 1.O, and another raising it from 0.05 to 0.25. Intuitively

we feel that the latter has attained a more spectacular success,

P

and that P1 should be proportional to log-_. As a compromise

between these contradictory demands, we define P1 as follows:

When P_ = O, that is when no values of R can lead to a favorable

outcome, the whole notion of regulation becomes absurd and _i is un-

defined.



In the example above_ R can guarantee the desired ©aLc<}me,

that is, can make P = i_ by selecting its values according to the

following mapping:
X z 1 2 3 4

R _ i 2 3 i

= _ _o5_ and T_X : R) = 1.5 bits.
in this case_ P I, _ = 0.5, /_i - - _ "

With the above definition cf _l _ it follows immediately from

theorem V.1 that T(X : R) = 0 implies fl _ C. Canfl and T(X : R) be

put in any other quantitative relation? We propose the following:

ConOecture :

fl _ 2 . T(x: R).

The conjecture can be supported as follows. When one tries to

construct an fz and a distribution N(X,R) for which the ratio

_i/TCx m) (or_I/T)is as largeas po_sibie,it _oo_appears,

through trial and error, that the ratio is largest when both fl and

T are very small. T is made small by making the columns of N_X,R)

nearly proportional. The mapping most favorable to regulation under

these conditions is apparently an fz of the following form,

f
Z

w

m

R

i

2

3

o

X

i 2 3 -o° m-1 m

i 0 0 0 0

0 i 0 0 0

0 0 i 0 0

0 0 0 i

0 0 0 0

C
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since in this case P* can be made small while P can be made considerably

larger with only a small T(X : R). The assignment N(X,R), with

nX,R

r

VI Sg(m - i) if X : R; E<<¢

i

m

has the following characteristics:

(I) The columns are nearly proportional, suggesting a

(2)

minimal T(x : R).

P* is as small as it can be with one i in each column

of fz, and (P - P*) is proportional to _.

With this fz and this N(X,R), PI is computed as follows:

[_ ] 1 re(m-l) 6P : m + (m-l)e : _ +

p_: i
m

_I : m(m - I) E log

i
+ m(m-l)E

1

m

For very small _

_i _ m(m - l) c[m2(m - i)_]

• m3(m- z)2 2 log e.

The transmission is computed as follows.

T(X : R) : H(R) - Hx(R )

m(m - l)¢ 10g [i+ m2(m - 1)a]

log e

: log m4- { (.l+ (m-1)m_) log (+ + (m-1)me)



Yne ratio _l/T is

T
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----log m _ log m [ !_ ® (m_:)m_ + (m-l)(_-me_

@ + {[1 + (m_l)m 2a_[(m-1)m2_ - ½(m-l)2A2,..._

1
g -,

_½(m®l)m5_2_ log e....m

= ½(ml)m4 loge.

= m3(m.l)2_ 2 log e

(m_l)m_ a _ log

=2( m-I ).
m

Consequently, P_/T is less than 2 for any m. If this distribution

is indeed the type that maximizes _/T, as there is good reason to

believe, then _l _ 2 T(X : R) always.

The transmission between X and R is thus seen to be an upper

bound for regulation when the goal is maximizing the probability of a

particular outcome or set of outcomes; if the goal is minimization

of a probability, the same sort of analysis holds, for to minimize

the probability that an event will occur is of course the same as

to maximize the probability that it will not.

We will next consider regulation when the goal of R is to

preserve constancy.

_.2o2. Regulation when the goal is to maintain constancy

In many situations involving regulation; the goal of the

regulator is to preserve a variable or variables at as nearly

a constant value as possible. The vast majority of the homeo-

static -_chani_ms occurring _n plants and animals are of this



type, of course; for example, the mechanismsmaintaining temperature

and blood sugar levels in humans, or of moisture content in plants.

Manymechanical regulators, such as thermostats, automatic volume

controls, and automatic airplane pilots, are also of this type.

As has been pointed out by Ashby6_ regulation in such cases

can frequently be viewed as blocking the transfer of information from

X to Z. X takes various actions which would show up as variations in

Z, were it not for appropriate counter-actions taken by R. If R is

completely successful, variations in Z are completely eliminated, with

the result that an observer of Z would obt_ain no information at all

about the values taken by X or R. The goal of R, maintainence of con-

stancy in Z, can thus also be seen as the suppression of entropy at

the output.

We can consequently define a new measure for regulation, p,

based on how much output entropy is eliminated by Rgs actions. To

meaningfully compare the output entropy with R acting and R not acting

(R fixed at some value_ in other words) it is necessary to assume, for

this section and most of the next, that X is passive and does not

change its actions according to how R behaves. We will consider_ then,

situations in which the distributions for X are fixed, the process is

a continuing one (finite or infinite), and the outcome at time _ is

determined by X and R at time _ ; fz _ X x R -_ Z. For example,

fz might be as follows:

R

fz

1

2

3

X

1 2 3 4

i 2 3 1

5 1 2 4

3 5 1 3 (z)

184
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Suppose X takes its values independently and equiprobably, so

that P(xi) = 1/4, i _i <_4. What will be the output entropy if R is

fixed at some particular value? If R_ = 1 for all T, the outcomes

1,2, and 3 will occur in the frequency ratios 2 : 1 : l_ and the out-

put entropy will be

[2!& log 2!& + 1!4 log 1/4 + 1!4 l_g 1/4 ] = 1.5 bits.

Similarly with R _ - 2 for all "c we obtain H2(Z) ---2.0 bits, and

with R _ = 3 for all _ , we obtain H3(Z) --1.5 bits. The regulator

can hold the output entropy to 1.5 bits by persistently taking values

lor 3.

Now we ask, by how much further can R decrease the entropy

through appropriate actions? Clearly the output entropy, H(Z), can

be dropped to zero if R takes its values in accordance with this mapping:

X _ i 2 3 4

R _ I 2 3 i

If regulation is measured by this further decrease in entropy,

it comes to 1.5 bits. The regulator_ by selecting values which are

appropriately matched with those of X, can succeed in maintaining the

output constant.

Let us define the following:

H =

Hi = H(Z) under the condition [ R _ = ri for all -c_ .

m { }
H* = min Hi

i=l

r* = the numerically lowest ri in the set _ri I Hi = H*_ .

=H* - H.
!



p, then, is a measure of the amount of output entropy which

R suppresses by acting, beyond the amount which it could suppress by

perpetually taking the value r*. We will proceed next to expand the

expression H* - H, to show the relation of /_ to T(R : X).

We will denote with a superscript * those quantities which

obtain when R is fixed permanently at r*. To get another expression

equivalent to H*, we proceed as follows.

H* _ H*(Z)

= H*(x,z)- _*(x)
z

_*(x)+ E* (z) H* (x)
X Z

Now H*(X) = H(X), since we have assumed t_at the distribution for X

is not dependent upon Rns values. Also, H* x (Z) = 0 since Z is a

determinate function of R and X. Consequently

_* =_(x)- H*z (x).

To get an expression equivalent to H,

H _ H(R,Z) - Hz(R )

- T(R:z)+ _(z)

- _(R:z)+ _(x) + _,x(Z)- _,z(X).

Since _x(Z) = O, this simplifies to

E = _(R:z)+ _(x) - _,z(X).

The difference between H* and H is /_ :

,,, : [.(x) .- : z)+ - ]
p = T(R:x) - T(R:z)+ [_,z(X)-E*z(X)] •

Let us examine these terms in turn. T(R : X) is of course a measure

of the coordination between R and X. It is bounded by H(R) 8_nd by

H(X), which are indicators of the "activity" of R and X. In fact if
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R takes values according to a mappir_ _; X _ R_ then

T(R • X) = H(R)o The first term in the expression for _ _ therefore,

indicates the statistical dependence of R on X.

The next term, T(R : Z)_ can be interpreted as the amount of

information one obtains about R by observing Z. Earlier it was

remarked that this quantity is small to the degree that R regulates

successfully; T(R : Z) is bounded by H(Z), the output entropy which

R tries to minimize.

The last two terms_ _,z(X) and H*z(X)_ can best be interpreted

in terms of fz" If fz has the property that for any ri, fz maps

X x ri one-to-one into Z (that is, no ri-_ow of fz has any repeated

entries), then HR (X) = H_.(X) = O, since given R and Z there is no
,Z

uncertainty about X. In this case,

p:TCR : X) - T(R : Z)

and clearly _ g T(R : X) always. This inequality is closely related

to, but not identical with, Ashby's "Law of Requisite Variety".

Back to interpreting the last two terms, it should be clear

that HR,z(X ) and H*z(X ) are nonzero only when there are rows of fz

(where rows correspond to values of R) with repeated entries, as in

the example on page 184. Formally, let

kip - number of X-values in the set

_xj I fz(Xj ' ri) _ Zp

i,p

K = log k.

Tb_n no row of f_ has any z repeated more than k times, and
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consequently HR,z(X) and H*z(X ) are both bounded by K. We will

occasionally refer to the number k as the multiplicity of the mapping fz"

The contribution to _ is the difference between HRIz(X ) and

H* (X); the difference is of course bounded by K, and it can be posi-
Z

tive or negative. Whenever HR,z(X ) is positive, H*z(X) is necessarily

positive, so the difference is in fact always less than K, if K _ O.

We collect these relationships in the following theorem:

Theorem Vo2

p: + [
_T(R : X) + K

The amount of regulation which R can impose is limited by the trans-

mission between R and X, plus a quantity _;z(X) m K.

Theorem V.3

T(R : X) = 0 $ f_0, regardless of K.

Proof :

We need only to show that T(R : X) = 0 implies HR,z(X) - H*z(X).

Suppose T(R : X) = O.

m

HR,z(X )= _ P(r i) Hi (X)
i=l Z

where superscript i is used to indicate quantities which are

defined under the condition { R _ = ri for all T _ . The identity

_i(x)•_ (z)_ _i(z)÷Ezi(X)

together with the fact that _(Z) --0 gives

_(X) = Hi(X) - Hi(Z).

Since the distribution of X does not depend on R, Hi(x) = H*(X).

Substituting in the first equation, we obtain
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m

ER,z(X)= I P(ri)[H*(X)- Hi(Z)]
i=l

m

= H*(X) - _ P(ri) Hi(z)
i=l

On the right is a weighted sum of terms each at least as large

as H*(Z). Thus

_z(X) <_H*(x)-H*(z).

The right side of this inequality is H_z(X)_ for

u_(x)- u*(x)+_(z)H*(Z)

and H_(Z)= O. Q.E.D.

These last two theorems are cental to the understanding of

regulation. The first shows + +_ha,,there is a very definite bound

on regulation_ this bound being the transmission between the regulator

and the regulated variable, plus an additional term which can be thought

of as indicating the congeniality of fz to regulation. The second

theorem says that regardless of the mapping, unless the regulator is

coordinated with the part it is trying to regulate it can do no better

than to perpetually take the value r*_ taking any other values can

only degrade the regulation when T(R : X) = O.

The situation is similar to that discussed earlier, where the

goal of R was to maximize a probability. In both cases the goal can

be partly attained by permanently taking a "best" value r% and any

improvement over that can only take place if the regulator is coor-

dinated with the variable it hopes to regulate. Moreover the improve-

ment is limited by the amount of that coordination.

These results can be generalized to include situations in

which the goal of the regtLlator is to cause_ a_ _he output, a
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deterministic cycle of events, and to guard that cycle against

disturbances from X. The goal is to preserve constancy of a

repetitive output, in other words - a heartbeat cycle, say, or the

wing-flapping cycle of a bird° Such situations may be encoded into

a form in which the goal is constancy, as _efore, but it is more

convenient to deal with them directly through a g_neralization of

our previous results.

We will consider, therefore, supervariables X, R, and Z

X_ R_ Zxand the mapping fz : x --_ , and we will define quantities

analogous to those used earlier in this section. Whereas before we

used a superscript i to indicate quantities defined under the

condition [ R _ = ri for all _ _ , here we use superscript j to

indicate the condition _ R = (_)j _ , ioeo, the value R takes is the

jth member of the set of all possible values for R. (The members can

be numbered, because the set of values is countably infinite as shown

by the numbering scheme suggested below, when R_ takes one of the

values l, 2, or 3:

J (_)j

0 I, i, i, 15 o..

1 2, 15 i, i, ...

2 3, i, 15 15 ...

3 i, 2; 15 i, ...

and so on. In general,

J = I (rk-1) (3k-l) where rk

k--i
--prk( )j.)
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Now, in a manner strictly .-r_7 ......._ _o_ _o the d_ve!opm_nt before_

we define

HL =

HLj = HL(z) under the condition { R = (r)j _ .

HL* =min { _j } _ "" t
, or g,!.b. _?'J if there is no minimum.

j_l j_l

(r)* =the (r)j with smallest jo_ in the set _ (_)j I HLj = _* } "

Some clarification may be helpful here. When we indicate that the

output information HL(z) is positive, this is subject to two interpre-

tations. One is that even if we are given all preceeding values of Z

sequence _ Zl, Z2, ..., Z_ _ ..., zn_ we are nevertheless
in the

not certain what will come next, even in the limit as n ---_ _o .

Another interpretation is that in a number of "experiments" each

yielding an infinite sequence { ZI_ g2 , .... , our uncertainty

as to which sequence will occur in any particular experiment is infinite;

that is, we cannot even designate beforehand a finite set of such so-

quences into which the new sequence must fall. This second interpre-

tation should make it clear that the condition _ R = (r)j _ implies

_(R) = 0; that is_ the regulator is deterministic. A deterministic

regulator, undergoing deterministic behavior, can minimize the infor-

mation in the output sequence by an auspicious choice of (_)j. The

degree to which the information is further reduced by non-deterministic

L

behavior of the regulator is measured by _ .

The reader should have little difficulty in seeing that our

deveiopm_nt of _^_,_expression e<;_. = serves also to yield an expression
/
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for _ L; one has only to superscript all the expressions with L

throughout. The result is given in the following theorem:

Theorem V.4

L
p _TL(R : X') + K

The amount of regulation which R can impose is limited by TL(R : X),

plus the quantity _,_(X) _ K. The situation is exactly analogous

to that of theorem V.2.

Similarly the proof of theorem V.3, with only minor changes

such as the substitution of P [(r')j I

proof for the following:

Theorem V.5

TL(R : X) : 0

for P(ri) , etc., serves as

L

/_ _ O, regardless of K.

This completes our generalization. The point of this chapter is just

this: regulation, whether the goal is maximizing or minimizing the

expectation of a particular set of outcomes, or is the suppression of

entropy, H(Z), or information, HL(z)_ can be partly attained by the

choice of auspicious permanent values or deterministic sequences - by

single-occurrence regulation, in other words. But to effect any

improvement over that, the regulator must coordinate his actions with

the system being regulated against, and the degree of that coordination

sets a bound on the regulation which can be achieved.

_.3. Important special cases of regulation

The last section indicated the importance of the quantities



T(R : X) and TL(R : [) to regulation _e_ con_[m_f_(_T5 wg?re placed _)

the general formulation, and in particular nothing was mentioned about

which variables acted as input to the regulator R. in this section we

will briefly examine some common regulatory situations in the light of

the previous results.
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5.3oi. Error-controlled feedback re6ulation

It is very common in texts on servomechanisms to see a diagram

of the sort shown in Figure 38; X(s) is the "c_mmand" or reference

input, E(s) is the "error" signal, and Y(s) is the "controlled output"

signal. The servomechanism is generally considered successful if the

error signal is kept within prescribed limits, or its root-mean-square

value is lower than a given number, or some other criterion is satisfied.

From our point of view, the goal of the regulatory mechanism is

to keep the error signal as nearly constant as possible. Preserving

the topology but changing the names of the variables, we can redraw

the diagram in our terms as shown in Figure 39. The mapping f corre-
z

sponding to the subtraction device in the servomechanism has multiplicity

one, i.e., HR,z(X ) = 0. Consequently, from theorems Vo2 and V.4,

T(R :x)

pL _- TL(H : _)o

This configuration has the interesting property that R receives

information about X only through Z_ and at the same time R is trying

to suppress entropy at Z. The regulator thus appears to be cutting off

its own source of information and lowering its own efficiency. Clearly

_'_carrot _ _,_ly sn_cessful at eliminating H(Z); for if H(Z) were zero,
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×(s)_( =I G($)

l u(s)

Y(S)_

Figure 38.

(a)

_l

-I _, I]

R

(b)

Outcome)

Figure 39.
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HL(z) would be zero and so also would HL(R)_ by theorem IV.12. If

HL(x) were positive we would have a contradic_ion_ because the subtrac-

tion device, if one of the two inputs is known_ is not an information -

losing mechanism. From this we conclude that regulation can never be

fully successful in an " 1 "error-contro_led regulator_ except in the de-

generate case of a deterministic inpl_t.

L

What is perhaps more surprising is that _ is necessarily zero'.

The "error" sequence must contain exactly as much information as the

input sequence, regardless of the activity of R. To see this, we note

that given a long sequence of Z, one can deduce the corresponding se-

quence of R (R, being passive, cannot generate information). And since

fz has multiplicity one, knowing R and Z is sufficient to deduce X.

Consequently from Z one can reconstruct X; the reverse is also true, so

HL(x) = HL(z). It is for this reason that we hedged above in saying

that R appears to be cutting off its own source of information; in fact,

it doesn't. The regulator is a mere recoder, preserving the information

but transforming it to a form with possibly lower entropy. The regu-

lation _ is the difference between the input entropy and the error

entropy,

f - E* (Z) - H(Z)

= _(X) - _(Z)

since H*(Z) --H(X) whenever the multiplicity of fz is one.

If there are no memory-constraints in the input sequence., i.e.,

if HL(x) = H(X)_ then the regulator*s task is completely hopeless, since

such a sequence cannot be converted to a form with lower entropy without

losing information. Consequently _ --O.



This observation can be generalized further: if HL(x) = H(X) - k,

so that the input sequence has a memory-type constraint of M bits per

step, then _ cannot exceed M, and consequently

H(X) - M _ H(Z) <.H(X).

TO show this we need only note that HL(z) = HL(x) = H(X) - M bits per

step; the entropy H(Z) is minimized by encoding the information into a

form with no memory constraints, i.e., a form with H(Z) = HL(z), since

H(Z) < HL(z) is impossible. Therefore

H(z) H(x)- M

and F _ H(X) -[H(X) - M] = M.

The regulation is limited by the amount of [ per-step] sequen-

tial constraint in the input sequence.

It might appear that _ is limited by the channel capacity of R,

and that if the regulator is to achieve the maximum regulation of M

bits per step, it must have a channel capacity of M bits per step, or

more. This is not necessarily so. If the input is deterministic, for

example_ thenM = [ H(X) - _(X)] = H(X), and R can achieve regulation

f = M by following a deterministic sequence absolutely identical to

that of X. R can be a perfect regulator, that is, and can keep the

error sequence absolutely constant, even with a channel capacity of zero.

However it is true that _ is limited by the entropy of R, since

& T(R : X) <, H(R), and therefore if R is to regulate it must take

more than one value. We might say that regulation is limited by the

"variety" capacity of R.

To summarize: from the point of view of information theory, an

error-controlled feedback regulator cannot reduce the information in the
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error sequence; it can only take advantage of sequential constraints in

the input to reduce the entropy of the error sequence° If there are no

such constraints, regulation is impossible°

We are led to suppose, therefore, that the great variety of

applications in which error-controlled feedback regulators prove useful

_- have one +_ _ co_--__on: ,b_ _nout seauences have sequeotial con-

straints, and probably very strong cgnstraintso

>°3°2° Feed-forward re&a_lation

In the error-controlled regulator_ R got its information about X

by way of Z° In the configuration we will discuss next, R gets this

information directly from X. This configuration_ which we will call

feed-forward regulation, is represented in Figure 40° This is the type

of regulation which occurs when one star_s to fall but catches himself_

or when an army which has obtained access to the enemyVs battle plan

takes appropriate countermoves, or when an automobile driver activates

his own brakes whenever he notices the car ahead braking.

In most practical applications, there is a delay between the time

the regulator obtains information about X and the time it acts on that

information° We will take this into account by assuming that X does not

have an immediate effect on R but does have an effect on R one time unit

xl _ T -1later_ ioeoj that R T depends on X2; °o o_ X but not on X o We will

assume that R_ is in fact determined by xl; X 2

The constraint between X _ and its predecessors in the X-sequence

X l, X"_-1 "_ HL(_is T(< _, °oo, > : X ); in the limit it is _(X) - )]=Mo

nv +.h_ Cn]]aosin_ Theorem for Transmission°

x -<T(<Xl, xa, o.o x"v'-I> :
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Figure 40.
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since R is a function of the earlier X's. Thus we have

:X) M

and consequently # _ M + K_ where 2K is the multiplicity of the

mapping fz"

The assumed time delay thus leads to the conclusion that

can only be positive when there is memcry constraint in the input se-

quence, and _ is limited by that constraint in the same way it was

limited in the error-controlled feedback regulator (except for the add-

itive term K_ which in the feedback case we assumed was zero). This is

only common sense, of course; if R is to regulate on the basis of the

past history of X, there must be some co_relation between that past and

the present value which R is trying to counteract.

If fz has multiplicity one, then just as in the case ef the feed-

back regulatorR cannot reduce H(Z) to zero except in the degenerate

case of a deterministic X. And just as in that case_ and for the same

reasons, the channel capacity of R is not necessarily abcund for # .

L
If fz has multiplicity one_ then surprisingly enough _ is

necessarily zero, just as for the feedback regulator. That is,

:

and no action on R_s part can reduce the information at Z. To see this,

suppose that one has been given the values for XI, X_; , XT-I..o , and by

observing Z_ he wants to deduce X_. This is always possible, since if

X1 XT-1 R_..., are given, can be calculated_ and when ZT and R_ are

known, there is no uncertainty about XT (when fz has multiplicity one).

Consequently if one is given some early values of X and then an indefi-

nitely long sequence of Z-values_ one can deduce all _he correspondin_
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X-values. The same is true if the roles of X and Z are interchanged,

so the X-sequence and Z-sequence must carry the same amount of infor-

mation, regardless of R.

The similarities between regulation in the feedback and feed-

forward cases are striking; in fact there is no substantial point on

which they differ. Neither is able to block information, HL(z), at all

when fz is of multiplicity one. _ in each case is limited by sequential

constraints in X, and the regulators in both cases succeed, if they

succeed at all, only by making use of those constraints. Neither type

is capable of "perfect" regulation, that is, maintainence of absolute

constancy at Z, except in degenerate cases.

The close relationship between the two is apparent also in the

difficulty of deciding whether to classify a given example of regulation

as feed-back or feed-forward. When one is following the motions of a

tennis ball with his eyes, for example, are eye-movements guided by

information about the position of the ball, or by information about

the angular error? It would be difficult to say.

When the quality of regulation achievable by feedback or feed-

forward regulation is not sufficient, another type which we shall call

"parallel" regulation is often used.

7.3-3. Parallel re_lation

In parallel regulation the regulator does not wait for X to

affect Z before starting to operate; it makes use of information from

the same source that affects X, as represented in Figure 41. The box D

represents a primary source of disturbances which affect X and R.

L
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i

_ (Ou,come)

Figure 41.
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This is the type of regulation in which R is frequently thought

of as "anticipating" X, so that the regulatory action is simultaneous

with the action of X. A driver sees a child run into the street and

applies his brakes at the same time as the car ahead; a homeowner hears

of an imminent cold wave and starts up his farnace; a schoolteacher

smells fire and leads her students out of the building. As Ashby has

pointed out, many of our senses have been developed precisely to get

advance warning of disturbances, so that regulatory steps can be taken

before the outcome can be affected.

The job of the regulator, in fact, is to coordinate his actions

with those of X in such a way that the outcome is not affected, no matter

what disturbances arise, or in other words to match X in such a way that

the channel capacity from D to Z is zero. In contrast to the other

situations we have studied, this is possible with parallel regulation;

H(Z) can sometimes be made equal to zero.

Much depends on fz, of course. In the worst possible case, fz

maps X x R one-to-one into Z and all regulation is clearly impossible;

R can do no better than to pick some value ri and keep that value always°

If on the other hand there is a value zk and a mapping _ : X --_ R

such that fz(Xi, _(xi) ) = zk for all xi _ X, then perfect regulation

is possible, for whatever value X takes_ R need only take the value /_X)

to keep the output fixed at zk. In this case R can attain perfect reg-

ulation by acting in a manner isomorphic with X, for as was pointed out

earlier, if X and R are isomorphic machines subject to the same input,

they behave isomorphica]ly and T(X : R) = H(X) - H(R).

To summarize: if for every value xi there is a corresponding
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value ri =_(xi) such that fz(Xi_ ri) is the same for all _, then R

can attain perfect regulation (H(Z) = O) by being isomorphic with X

and subject to the same input.

If fz is of multiplicity one, then L is limited by the channel

capacity of R, and in any case_ since TL(R : X) _< HL(R),

Thus in parallel regulation; the channel capacity of the regulator is

a fundamental limit on its ability to reduce the output information

rate, a fact which is a pleasant complement to the fact that the capacity

also limits its ability to increase that rate.

L

This fact, that parallel regulation /o is limited by the channel

capacity of the regulator, is a fundamental li_/< between information

and control; it means that unless the situation is especially fortuitous

(i.e., fz is especially favorable to regulation so that [HR_z(X ) - H_.(X)]

is positive), any attempt at regulation can only succeed to the degree

that the regulator has access to sufficient information_ "knows how" to

transform it into appropriate action, and is able to carry out that

action. The channel capacity, and thus the regulation, is limited by

the weakest link in that chain.

5.4. Further remarks

The major restriction on the quantitative results in this chapter

is that they were derived under the assumption that X was not affected

by R; yet much of real-world regulation fits that assumption. Regulation

in complex systems is frequently in one of the three forms we have dis-

cussed, often with X and R being complex systems and Z being a vector

with components; the theorems developed above hold just as well in that
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case as when X, R, and Z are all very simple. Of course it requires

little imagination to concoct regulatory schemes which appear to be

more complex than any of the three basic forms, but further inspection

often shows that a scheme apparently more complex may be recoded into

one of the basic three or a simple combination of them.

Our purpose in this chapter, however, has been not to analyze

all common schemes but rather to indicate some of the primary relations

between information and regulation, to quantify these relations as

much as is feasible in a general discussion, and to illustrate these

relations by the three important examples. This, we hope, is a good

start toward a better understanding of regulation.
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